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Chapter 1

Introduction

1.1 Outline of this thesis

The field of nano-optics is a flourishing field of research that has grown
rapidly during the past 20 years. The goal within the field is to control
the flow of light at a scale smaller than its wavelength. Nano-plasmonics is
currently the most promising way to realize this miniaturization of optics,
as the electromagnetic fields in plasmonic structures are strongly confined
to the surface.

This thesis studies one of the most popular structures in nano-plasmonics:
A subwavelength hole in a metal film. This geometry has been the sub-
ject of many studies since the discovery of extraordinary transmission by
Ebbesen and co-workers [1]. This intriguing effect, leading to high trans-
mission through arrays of subwavelength apertures, has greatly contributed
to the increasing interest in the field of plasmonics over the past 10 years.
Two topics are investigated in this thesis, both with the objective to gain
understanding of light interaction with subwavelength holes. One topic
concentrates on studying the dynamic properties, while the other focusses
on the local optical properties of subwavelength holes. Central to both
studies is the role of hole shape. The dynamic properties will be investi-
gated in an experimental study of the propagation of light pulses through
subwavelength holes (Chapter 3). We will see how the shape of holes in a
subwavelength hole array influences the group delay of light pulses through
these structures. The results are linked with nonlinear experiments to in-
vestigate the potential of structures of this type to increase light-matter
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Chapter 1

interactions. The aim of the second study is to experimentally investigate
the local optical properties of single and multiple subwavelength holes in
the visible regime. To obtain a high spatial resolution, an electron beam
was used to generate light on the sample via a mechanism that is called
transition radiation [2, 3, 4, 5]. In Chapter 3 the theory necessary to under-
stand this technique is discussed. The experimental setup is described in
Chapter 6. The results of transition radiation microscopy measurements on
subwavelength holes are discussed in Chapters 6 to 9, focussing respectively
on the scattering of surface plasmons on a hole, measurements in the near-
field regime, the effects of polarization, and the interaction of multiple holes.
This thesis starts of with an introductory chapter on nano-plasmonics.
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Chapter 2

Nanoplasmonics

In this chapter some basic nanoplasmonic concepts, that are used
within this thesis, are introduced. We discuss the optical properties
of gold and the basic properties of surface plasmon polaritons. Local-
ized plasmons and lossy surface waves are introduced. To sketch the
context in which this research has been performed, the extraordinary
transmission effect and the transmission through subwavelength holes
is reviewed.

2.1 Introduction

Nano-plasmonics is the field of research that studies the interaction of light
with conductors at the nanoscale. The coupling between the electromag-
netic field and collective charge oscillations on the interface between a con-
ductor and a dielectric gives rise to a wealth of phenomena that are of
interest to both fundamental and applied research. Amongst these phe-
nomena is the beaming of light from a subwavelength aperture; a careful
design of concentric surface corrugations around an aperture in a metal
layer allows the formation of a light beam with a width that is comparable
to the wavelength of the light [6]. Localized plasmon resonances on small
metal particles lead to high field enhancements on their surface. Using the
resonant localized plasmon field of a bow tie antenna, coherent extreme-
ultraviolet light was created [7]. Nano-plasmonics is at the heart of the
current rise of research into metamaterials, enabling exciting physics and
applications such as the ‘perfect’ lens: a lens capable of imaging the com-
plete electromagnetic field of an object [8]. Perhaps the most spectacular
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Chapter 2

result within this field of research will be optical cloaking [9]. This science
fiction like effect might one day become possible due to nanoplasmonic en-
gineering. It is beyond the scope of this thesis to discuss the wide range of
topics that are studied in this field. The aim of this Chapter is to introduce
the basic concepts of nano-plasmonics to outline the context within which
the research described in this thesis was done. For this reason some basic
properties of the dominant material used in the experiments in this thesis
- gold - are described. Subsequently, surface plasmon polaritons, localized
plasmons and lossy surface waves are introduced. Finally, the extraordi-
nary transmission phenomenon and the optical properties of a hole in a
metal layer are discussed.

2.2 The optical properties of gold

Throughout this thesis the structures under investigation are fabricated in
gold. A practical reason for this is that gold samples retain their good qual-
ity for a reasonable amount of time. This is due to the chemical inertness
of this noble metal. Additionally, gold is an easily obtainable material that
can be evaporated on a surface in a thin smooth layer. A more fundamental
reason to use gold for the experiments in this thesis are its optical prop-
erties. These properties are best described with the dielectric constant ε,
which is a function of the vacuum wavelength. The real and imaginary part
of the dielectric constant of gold are plotted in Figure 2.1 as a function of
wavelength [10]. These graphs show that the real part of ε is negative and
has much larger values than the imaginary part. This is a characteristic
that gold has in common with many metals, and it arises from the contribu-
tion of the conduction electrons of the metal to the dielectric constant. The
contribution can be neatly described by a Drude model [11, 12], in which
the response of the metal to external electromagnetic waves is described
as a driven Lorentz oscillator in the limit of no restoring force. This leads
to a dielectric constant of the form ε = 1 − ω2

p/ω2 with ω the frequency
of the light and ωp the plasma frequency. In bulk gold the frequency ωp

corresponds to light with a vacuum wavelength of 140 nm. A Drude model
was fitted to the measured value of dielectric constant, with the plasma
frequency and a damping term as fit parameters (see the dashed curves in
Figure 2.1). The model proves to be a good description of the dielectric
index above 600 nm. however, at wavelengths below 600 nm the Drude
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Figure 2.1: Real and imaginary part of dielectric constant of gold with fits
of Drude (dashed ~ωp = 8.03eV ~Γ = 63.7meV ) and Drude-Lorentz model
(dash-dot λ0 = 442nm). The value of the dielectric constant used is a
measured value, obtained in an ellipsometry measurement.

model is not a suitable model to describe the optical properties of gold. At
these high frequencies, the metal starts to behave less and less as a Drude
metal because apart from the conduction electrons, interband transitions
of the bound valance electrons come into play as well. The contribution
of the valance electrons can be modeled with a Lorentz oscillator ẃıth a
restoring force leading to a real resonance frequency. A model consisting of
a combined Drude and Lorentz contribution can be fitted to the measured
dielectric constant. The result of this fit is shown as a dash-dotted curve
in Figure 2.1.

Summarizing, two regimes can be distinguished in the optical properties
of gold within the region 400-1200 nm. Above 600 nm, the free electron
contribution dominates the behavior of ε. Here, gold can be considered an
ideal metal. Below 600 nm, the bound electrons play the most important
role and the optical properties differ distinctively from an ideal meal.

2.3 Surface plasmon polaritons

A surface plasmon polariton (SPP) is a surface bound wave that results
from the resonant coupling of charge density oscillations of the conduction
electrons in a metal with the electromagnetic field. It arises naturally as a
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Chapter 2

homogeneous solution of the Maxwell equations on a flat metal-dielectric
interface. The electromagnetic field of a SPP propagates over a metal
surface as longitudinal surface charge density oscillation and decays in both
directions perpendicular to the surface. The dispersion relation of these
waves can be derived from boundary conditions for the fields on the surface
and has the form [13]

ksp =
ω

c

ε1ε2

ε1 + ε2
, (2.1)

where ksp is the surface plasmon wavevector, c is the velocity of light in
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Figure 2.2: The SPP dispersion curve for a gold-air interface. The hori-
zontal bars indicate the imaginary part of the in-plane wavevector. Values
in the figure are calculated based on a measured value of the dielectric con-
stant.

vacuum, and ε1 and ε2 are the dielectric constants of the two media. To
form a genuine surface bound mode, the dielectric constants of the two
materials must satisfy the conditions ε1ε2 < 0 and ε1 + ε2 < 0. These con-
ditions ensure that the wave vector is mainly real in the direction along the
surface while kz, the wavevector perpendicular to the interface, is mainly
imaginary. In Figure 2.2 the dispersion of a SPP on a gold-air interface as
calculated with Equation 2.2 is shown. The horizontal bars in the graph are
the magnitude of the imaginary part of ksp and indicate the width of the
SPP resonance in wavevector space. Below 600 THz (above 500 nm), the
dispersion curve lies entirely under the light-line. Since the SPP wavevec-
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tor is too long to allow wavevector matching at the boundary, it cannot
couple to light propagating in air. Above 600 THz, the imaginary part of
the in-plane component of the SPP wavevector becomes so large that the
width of the dispersion curve crosses the light line. At these frequencies the
SPP is not only damped because of Ohmic damping in the metal, but also
because of radiation losses. As the dielectric constant in this region of fre-
quencies is dominated by interband transitions of bound electrons instead
of by the response of a free electron gas, the surface wave does not show the
typical surface plasmon polariton characteristics. The frequency at which
the denominator in Equation 2.1 becomes zero is called the surface plasmon
resonance frequency. Theoretically, frequencies approaching this frequency
will have very large wavevectors, leading to very small wavelengths. In
principle this shortening of the wavelength enables very high confinement.
For an interface between a pure Drude metal and air, this condition oc-
curs at the frequency ω = ωp√

2
. In the case of a gold-air interface, this

resonance lies in the UV and plays no role in the work described in this
thesis. For a good understanding of the optical effects occurring in gold
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Figure 2.3: The SPP field extension in air (a) and gold (b). Values in the
figures are calculated based on a measured value of the dielectric constant.

in the region from 400 to 1100 nm, it is useful to be aware of a few other
properties. In Figures 2.3 and 2.3, calculated values of some characteristic
distances of a SPP on gold are plotted. Graphs 2.3a and 2.3b show the
1/e extension of the field of surface plasmons into the air and into the gold
respectively. Note that the extension in air is comparable to the wavelength
while the extension in gold is limited to a few nanometer. Figure 2.4 shows

11



Chapter 2

400 600 800 1000
10-1

100

101

102

103

Propagation length

Wavelength (nm)

D
is

ta
n

ce
 (

μ
m

)

Figure 2.4: The SPP propagation length on a flat gold surface. Values in
the figure are calculated based on a measured value of the dielectric constant.

the propagation distance of surface plasmons. In the region below 550 nm
this distance is very short due to the high losses discussed in the previous
paragraph.

2.4 Localized surface plasmons

In the interpretation of light interaction with nanoplasmonic structures,
localized surface plasmons (LSPs) play a prominent role [14]. Localized
surface plasmons are, as their name suggests, surface charge density os-
cillations that are localized in space. The clearest manifestation of LSPs
are the resonances of small metallic particles [15] that are famous for their
beautiful coloring of some glass stained windows. Assigning a resonance
to a localized surface plasmon is useful, as the response expressed in the
scattering or absorption of these structures has spectral features that often
depend strongly on their geometry. However, one should keep in mind that
these resonances are not of a high quality factor as in some other fields
in photonics. This is due to the Ohmic damping and the intrinsic radia-
tion losses of the LSP’s. Whereas light cannot couple to surface plasmon
polaritons, it can couple efficiently to LSP’s due to the finite extent of
these structures. A key property of localized plasmons is that they do not
show dispersion, i.e., their response is insensitive to the magnitude of the
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Nanoplasmonics

wavevector of the field that excites them. This automatically limits them
to sizes smaller than the wavelength. Other examples of systems in which
localized plasmons play a role are bow tie antennas and sharp metal tips,
both of which have been exploited in nonlinear optics [7, 16, 17].

2.5 Surface waves

The past 10 years have shown a growing consciousness in the nano-plasmonics
community that apart from surface plasmon polaritons other surface waves
can also play a role in many of the observed phenomena. The nature of
these surface waves is heavily debated in the community. This ’other’ con-
tribution is a wave that, for optical frequencies and on metals, is always
present in combination with the surface plasmon polariton. At distances
close to the source of both waves this wave dominates over the surface plas-
mon polariton. Its amplitude decreases however initially more quickly than
the amplitude of the surface plasmon polariton. Throughout this thesis
these waves will be referred to as “lossy surface waves”.

During the past century, surface waves have been noticed several times
by many different authors discussing for instance antenna theory. As early
as 1909 Sommerfeld in his research on the propagation of radiowaves, found
that surface waves were excited by dipoles above a surface [18]. His solu-
tions and the existence of surface waves were however subject to debate
for many decades [19, 20]. In the 1980s Ford and Weber in their work on
dipoles radiating above metal surfaces recognized that apart from a surface
plasmon polariton other surface waves play a role as well and named these
waves “lossy surface waves” [21]. Their interpretation is that these surface
waves are associated with the near-field of the dipole. Lezec and Thio were
the first to propose an additional type of surface wave in their explica-
tion of the extraordinary transmission effect and named them “composite
diffracted evanescent waves” [22]. Their proposal lead to a lot of criticism
[23], mainly because their underlying model was based on a scalar wave ap-
proximation. Generally, but especially in diffraction problems where metals
are involved it is incorrect to use a scalar wave approximation and a full
vectorial method should be used instead. Their claim of an additional sur-
face wave was however well supported by experiments. Recent papers by
Lalanne and co-workers propose yet another wave named “creeping wave”
or “quasi-cylindrical wave” [24, 25]. In these papers the scattering of waves
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at a slit is assumed to be well described by the radiation of a line dipole
on the surface. From this treatment the nature of the waves in the math-
ematical sense became more clear, but still included a numerical solution
of a rather complex integral. This was resolved by Gravel and co-workers
[26] who presented an analytical description of these waves. Based on their
findings the waves appear to have a character that is related to the surface
plasmon and the authors interpret the waves as “transient surface plasmon
polaritons”.

It is important to realize that these waves are in full agreement with
rigorous techniques to solve Maxwell’s equations. All the numerical meth-
ods used in the community such as finite difference time domain (FDTD)
calculations, boundary element method (BEM) or fourier model methods
(FMM) fully incorporate these waves. For a more fundamental understand-
ing of many effects in plasmonics and beyond, a physical interpretation of
lossy surface waves is however highly desirable.

The physical interpretation of these waves is surely not as clear as it
is for surface plasmon polaritons. The latter are homogeneous solutions or
eigenmodes of a system consisting of two half spaces with a different dielec-
tric index. In the formalisms used by Lalanne, Gravel and Ford and Weber,
the Maxwell equations are solved for a source close to or on the interface
between a half-space metal and a half-space dielectric. For this they use a
wave expansion in the directions parallel to the surface. As a last step in
finding the electromagnetic fields on the surface, they have to perform the
Fourier-integral needed to go back from reciprocal to real space. Lalanne
and Gravel use a contour integration in the complex plane of the integra-
tion variable (k‖) to find the solution. In this integral SPPs emerge quite
naturally from a pole in the reflection coefficient. The rest of the solution
originates mathematically from a different type of singularity, a so called
branch point [27]. This contribution to the field in real space contains the
normal propagating light and the debated surface waves. Our current un-
derstanding is that these surface waves contain at least a contribution that
arises from the large wavevectors a (for instance dipolar) source has close
to its origin. These waves correspond to the response of the surface to the
near-field of the source. This leads to a wave that at least initially decays
faster than the surface plasmon polariton. Additionally there seems to be a
contribution to the field on the surface that propagates much further. The
interpretation of the waves and their role in many plasmonic systems will
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Nanoplasmonics

undoubtedly be subject of many discussions within the field for some time.
However, the existence of lossy surface waves seems undeniable by now.
As we will show in Chapter 4 lossy surface waves are excited in transition
radiation microscopy as well. The naming of these waves in literature by
different authors shows considerable dispersion. All the proposed names
have their pro’s and con’s, in this thesis we will use the term lossy surface
wave as was proposed by Ford and Weber. We will use the term surface
wave, if we want to include all electromagnetic fields on the surface, i.e.,
lossy surface waves and surface plasmon polaritons.

2.6 Extraordinary transmission

The important role that subwavelength holes play in the nano-plasmonics
field started with the discovery of the extraordinary transmission (EOT)
effect by Ebbesen and co-workers [1]. The authors studied the transmission
of light through a 200 nm thick silver film perforated by subwavelength holes
arranged in a periodic array (see Figure 2.5). They observed sharp peaks
in the transmission spectra at wavelengths many times larger than the size
of the apertures. The overall transmission, normalized to the open surface
of the structure, exceeded unity for specific wavelengths. This remarkable
observation was in complete contradiction to the theoretical understanding
of light transmission through subwavelength apertures at that time.

Soon after experiments showed the remarkable influence of hole shape
on the transmission of these structures [2, 28, 29]. When one of the sides
of rectangular holes was decreased, the peak in the transmission spectrum
showed a large (100 nm) red shift. This was yet another surprise of extraor-
dinary transmission, as one naively might expect the cutoff of a single hole
to shift to lower wavelengths as the size of the hole is decreased. In this
section on extraordinary transmission we will focus on rectangular holes.
Firstly we will discuss the properties of these holes and secondly the trans-
mission through hole arrays.

2.6.1 Single subwavelength holes

Already in the 1940s the diffraction of of light by subwavelength holes was
studied theoretically, most notably in the works by Bethe and Bouwkamp
[30, 31]. They described the transmission of light through a subwavelength
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10 µm

Figure 2.5: Scanning electron microscopy image of a subwavelength hole
array in gold. The period of the array is 410 nm in both directions.

hole in an infinitely thin perfect conductor. Their works showed that the
transmission through the holes scales as (r/λ)4 with r the radius of the
hole and λ the wavelength of the light. For holes of the size Ebbesen and
co-workers experimented with, this led to a prediction for the transmission
that was orders of magnitude smaller than what was observed. The remark-
able experiment sparked a wealth of theoretical investigations that have
severely changed the understanding of the transmission through an aper-
ture. Notwithstanding the excellent work done by Bethe and Bouwkamp,
their results were simply not applicable to the case of light transmission
through a real metal layer of finite thickness.

The current view on transmission through a subwavelength hole in a
film with a thickness larger than the penetration depth of light, is that the
holes can be considered as waveguides. The modes of these waveguides can
be described completely analytically for perfect conductors [32]. In this
case, the lowest order mode of a square waveguide has a cutoff wavelength
λ = 2d where d is the width of of the waveguide. For wavelengths above
this cutoff condition, transmission is exponentially damped. Due to the
finite conductivity of a real metal, the penetration depth of the field in a
real metal is larger than in a perfect conductor. This increases the cutoff
wavelength of apertures in films made of for instance gold or silver, but it
does not explain the high transmission observed for single apertures in the
optical regime.
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A breakthrough came with the realization that the propagation through
rectangular holes could be modeled accurately with two coupled surface
plasmon polaritons on each side of the hole [33]. This type of mode was
already known for some time as the mode of a metal-insulator-metal waveg-
uide [34]. This mode has no cutoff in an infinite long slit. In a hole of finite
width this is obviously not true and the mode has a cutoff. To get a better
idea of this effect we show the influence of the hole shape on the cutoff
frequency of the hole. A model for the cutoff wavelength as a function of
the dimensions of the hole was proposed by Collin and co-workers [35] in
which the cutoff wavelength is given by

λc = 2(wx + 2δ)

√
εair(1 +

2δ

wy
), (2.2)

with δ the skin depth of gold given by δ = λ/(4π
√

εgold), wx and wy the
width and height of the hole. εgold and εair are the dielectric constant of
the gold and the air respectively. This approximate model is derived by
approximating the effective index of the waveguide mode and was shown to
have good correspondence with finite element calculations. In Figure 2.6
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Figure 2.6: The cutoff for the lowest order mode for rectangular holes based
on a model by Collin and co-workers [35]. The lines indicate the dimensions
of holes with a cutoff wavelength of 500, 600, 700 and 800 nm. The hor-
izontal lines correspond to the X-mode, while the vertical lines correspond
to the Y-mode.

the cutoff of the two orthogonal modes that can propagate in a rectangular
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hole are plotted as a function of the height for different wavelengths. The
curves indicate the cutoff for different wavelengths. As we will be mainly
interested in wavelengths between 400-900 nm in this thesis, we show the
cutoff dimensions for wavelengths of 500, 600, 700 and 800 nm. The X-
mode oscillating along the width of the hole correspond to the horizontal
lines for the cutoff dimensions of the hole (see Figure 2.6). Notice especially
that the cut of for the X-mode of a hole of fixed height shifts to the red
as the hole width decreases. This explains why a decreasing width of a
rectangular hole leads to a red-shift of the observed transmission peak in
extraordinary transmission [2, 28, 29, 36].

Additionally a resonance phenomenon was found to exist at the cutoff
condition [37, 38]. Here the propagation constant vanishes, thus the wave-
length of the light propagating through the aperture becomes very large.
The reflections at the two end facets of the hole lead to the formation
of a zero-λ Fabry-Perot resonance that further enhances the transmission.
These resonances are often called localized resonances as they are localized
in the hole and therefore show no dispersion. Different types of localized
resonances were associated with the holes by several authors, where most
consider resonances in the holes [39, 37, 38] and some a localized surface
plasmon on the edge of the hole [2].

The ability to launch SPPs with the apertures plays a vital role in the
explanation of the extraordinary transmission phenomenon, therefore this
has been separately investigated by several authors, both experimentally
[40, 41] and theoretically [42, 43, 44]. The common result of these publi-
cation is that a high efficiency of surface plasmon polariton excitation is
possible with a subwavelength hole [41]. Additionally it was shown that the
emission of a circular hole has a dipolar origin due to the opposite charge
accumulation at both sides of the hole [42]. A thorough investigation of
the surface plasmon polariton launching properties of single holes was done
by Baudrion and co-workers [41]. They measured and calculated the cou-
pling efficiency of incident light to SPPs on a gold-air interface with square
holes of different size. They found that for a wavelength of 800 nm, the
coupling to surface plasmons peaks at holes with a width of 200 nm, where
they found a normalized efficiency of 25%. For smaller holes they observe a
steep decrease of the coupling efficiency to 5% at holes with a width of 100
nm. For large holes the decrease is less steep and for holes with a width
of 500 nm the measured efficiency is 15 %. They associate the peak in
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efficiency with the cutoff of a hole. Beyond cutoff the efficiency is very low,
at cutoff it is maximum and above cutoff light can couple to the hole and
the scattering efficiency decreases slowly with wavelength. The coupling to
the far-field of the surface wave occurs thus to have a relation to the modes
of the hole.

2.6.2 Arrays of subwavelength holes

The development in understanding of the transmission through single sub-
wavelength holes went parallel with the developments in the extraordinary
transmission (EOT) phenomenon, in which a periodic array of holes plays
a role [45, 46, 47, 48]. Currently the view that is shared amongst most re-
searchers is that the EOT phenomenon involves surface waves propagating
on both interfaces, propagating or tunneling modes through the holes and
free space light modes on both sides of the sample. The coupling between
the surface waves on both interfaces via the holes and to the continuum
of states available in the media on both sides of the structure gives rise to
transmission spectra with a typical Fano shape [49, 50]. The exact out-
come of the coupling between the different modes is critically dependent on
the conditions of which the periodicity is the most prominent. The surface
waves on both sides of the hole in the original paper were surface plasmon
polaritons but this is not necessary. It is widely recognized that surface
plasmon polaritons are responsible for EOT in most experiments in the
optical regime [51, 52]. Yet, in principle any other surface wave can lead
to the same phenomenon [53, 25].

The dynamics of the resonances present in the structure can be studied
by characterizing the temporal shape of the pulses propagating through
hole arrays. Several studies have been performed both experimentally and
theoretically, that have confirmed the resonance properties that have been
ascribed to EOT [54, 55, 56]. The delay observed in these measurements is
in the range -40 to 10 fs. Noteworthy to the studies in this thesis, the delay
introduced by the propagation through the hole was found to be negligible
with respect to the total delay [54].

The high fields present in hole arrays due to the plasmonic modes on the
surface and in the holes, lead to nonlinear effects. Bistability was observed
in hole arrays coated with a nonlinear polymer [57]. Second harmonic gen-
eration (SHG) was observed by illuminating the holes with high intensity
femtosecond laser pulses [58]. Nieuwstadt and coworkers investigated the
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role of hole shape on the second harmonic generation efficiency. Varying
the aspect ratio of rectangular holes in an array, a specific ’hot’ hole shape
was found to exist at which the SHG efficiency increased by an order of
magnitude. It was suggested that this was related with a lower group ve-
locity for that specific hole shape. One curious detail in these experiments
is that in the idealized case the samples under investigation have inversion
symmetry. SHG is not expected in bulk materials with this symmetry [59].
Note that at the surface of a inversion symmetric structure however, SHG
is allowed [60] due to amongst other things quadrupole contributions. It
is unknown whether the SHG observed in these experiments is related to
small roughnesses of the gold or to a quadrupole contribution to the SHG.
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Group delay through
subwavelength hole arrays

The role of hole shape in the dynamic properties of light interacting
with arrays of rectangular subwavelength holes is investigated and re-
lated with nonlinear effects occurring in the structures. It is shown
that the group delay of a femtosecond pulse propagating through a hole
array depends on the shape of the hole. The observed delay has a max-
imum near the cutoff frequency of the holes. Additionally it is shown
that the amount of nonlinear second harmonic generated in the sample
increases with group delay.

3.1 Introduction

After the discovery of the extraordinary transmission effect [1], many re-
searchers started to investigate the physics of subwavelength hole arrays.
Soon, experiments showed the remarkable large influence of hole shape [28].
When one of the sides of a rectangular hole was shortened, the transmission
showed a large red shift. This was completely contrary to expectations at
that time, as one would naively expect the cutoff of a single hole to shift
to lower wavelengths as the size of the hole is decreased. Theoretical work
in the years thereafter, showed that the transmission through a rectan-
gular hole is significantly influenced by surface plasmon polaritons in the
hole [37, 38, 33]. Their role in the transmission properties of rectangular
holes, leads to a counter intuitive red shift of the cutoff wavelength when
the height of a hole is decreased (see Section 2.6.1). Additionally a special

21



Chapter 3

condition was shown to exist at cutoff, where a Fabry-Perot like resonance
is expected. Although the dynamics of light propagation through subwave-
length holes has been thoroughly studied (see Section 2.6.2), the role of
hole shape and the dynamic properties of the resonances of the rectangular
hole, has however been experimentally untouched until now.

Since surface plasmon polaritons are bound to the surface, high elec-
tromagnetic fields are present directly on the surface of the metal. This
has led to an interest in hole arrays for enhancing nonlinear effects [58].
In the work by van Nieuwstadt and co-workers [61] the role of hole shape
on the second harmonic generation (SHG) efficiency of hole arrays was in-
vestigated. It was found that there exists a ’hot’ hole shape for which the
SHG efficiency is an order of magnitude higher then for other hole shapes.
It was suggested that this striking effect is related to the group velocity
in these structures. In a Fabry-Perot type resonator, the intensity in the
medium rises linearly with the delay. Since the amount of second harmonic
generated in a medium scales with the square of the intensity, the amount
of second harmonic generated is expected to rise quadratic with the delay
through the medium. A direct link between the nonlinear effect and the
group delay has however not been shown in these structures yet.

In this chapter we investigate the role of hole shape on the dynamic
properties of subwavelength hole arrays and the nonlinear second harmonic
generated. Using an interferometric technique we will measure the group
delay of femtosecond pulses through arrays of subwavelength holes. In a
separate experiment we will investigate the role of hole shape on the SHG
effect.

3.2 Subwavelength hole array structures

The samples under investigation are arrays of 34 x 34 holes milled with a
focused ion beam in a 200 nm thick gold layer on a glass substrate (Fig-
ure 3.1). The period of the square lattice array is fixed at 410 nm. The
dimensions of the holes varies from 205 x 141 to 328 x 88 nm, keeping the
open surface of the arrays constant at 33 µm2. Thus, the range of aspect
ratios of the holes runs from 1.46 to 3.73 and is chosen such that the range
crosses the condition for cutoff for wavelengths around 800 nm, as can be
checked in Figure 2.6. The total The accuracy with which the dimensions
of these holes can be determined is limited, due to the difficulty in defining
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the position of the edge in scanning electron microscopy or atomic force
microscopy data. For this reason the dimensions used in the presentation
of the results are the original design parameters. These deviate from the
real dimensions mostly by a small (10-20 nm) systematic error that arises
from he spot size and magnification factor used during focused ion beam
milling. For calibration purposes every hole array is accompanied by a large
reference hole with the same outer dimensions as the whole array, i.e., 14
x 14 µm. The structures and reference holes are placed 70 µm apart.

3 mμ

Figure 3.1: Scanning electron microscopy image of a hole array with sides:
W=246 nm and H=117 nm, the aspect ratio W/H is 2.1. The inset shows
a zoom in of an individual hole. The polarization is oriented along the short
axis of the holes as indicated by the white arrow.

3.3 Experimental technique

To determine the group delay we use an interferometric technique. The
sample is mounted in one of the branches of a Mach-Zehnder interferometer
(see Figure 3.2). A femtosecond laser pulse is sent into the interferometer
and an interferometric signal is detected. Changing the path length of the
reference branch, allows us to measure the interferogram of the femtosec-
ond pulse (Figure 3.3). The position of the maximum in this interferogram
changes as the delay in the sample branch changes. The relative pulse
delay can be determined by comparing the position of the interferogram
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when the pulse propagates through a sample with the position of the in-
terferogram when the pulse propagates through a reference structure. To
obtain amplitude and phase of the interference signal simultaneously we
use a heterodyning lock-in technique [62] in which the light in the refer-
ence branch is shifted 9 MHz using two acousto-optic modulators. From
the detected signal we construct the complex interferogram. The delay line
used to measure the interferogram is a pair of mirrors mounted on a linear
motor (Newport XMS50) with an encoder (Heidenhain LIF 481). The po-
sitioning of this stage is specified to have a minimum incremental motion
of 10 nm and a resolution that is tenfold smaller than this. To compensate
for the dispersion introduced by the two acousto-optic modulators, a com-
pensating crystal is mounted in the other branch. The light source used is
a Ti:sapphire mode-locked laser (Spectra Physics Tsunami) that generates
100 fs pulses at a 80 MHz repetition rate, tunable in the range 760-830
nm. The polarization of the light in the experiment is rotated with a λ/2
waveplate to orient it parallel to the short axis of the holes. The light is fo-
cused and collected using two lenses with a numerical aperture of 0.4. The
focus is determined to be smaller than 2 µm by imaging the sample and
the focus on a CCD camera. The sample is mounted on a X-Y piezo arm
that moves the sample perpendicular to the impinging laser beam. This
allows us to rapidly alternate the measurements between the hole array and
the reference hole. A single interferogram is acquired within half a second.
Alternately, the hole array and the reference hole are measured and this
cycle is repeated 100 times. This method allows us to monitor and possibly
remove a drift in the path lengths of the setup. To accurately determine
the delays, the obtained interferograms are further processed by filtering in
the frequency domain. The signal is Fourier transformed and low frequency
noise sources of electronic origin are removed. To determine the delay, a
Gaussian is fitted to the amplitude of each filtered interferogram. Of each
structure more than 100 interferograms are processes as described. From
the obtained delays an average delay and a spread in delay is determined.

The second harmonic generated on a sample is measured in a separate
experiment. The light is focused on the sample with a NA of 0.17 and
collected with a higher NA. The sample is tilted under a small angle of 2.5
degree to prevent back reflections from reaching the mode-locked pulsed
laser. We verified in a separate experiment that the results depend only
very weakly on this angle. The transmitted fundamental wavelength is
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attenuated by a combination of colored glass and interferometric filters.
The generated light is measured with a spectrometer (Acton SpectraPro
2300i) equipped with a cooled CCD camera (Princeton Instruments Spec10-
B/XTE). Spectra are typically collected in 200 seconds.

Detector

Delay line

Sample

100 fs-pulse

AOM

AOM

Dispersion

balance

Reference branch

Sample branch

Figure 3.2: The interferometric setup used to determine the group delay.
Femtosecond pulses from a Ti:sapphire laser propagate through a Mach-
Zehnder interferometer. In the reference branch two acousto-optic modula-
tors (AOM) are placed to shift the frequency of the light by 9 MHz. A delay
line is used to measure the interferogram. In the signal branch a sample is
placed plus a dispersion compensating crystal to balance the dispersion in-
troduced by the two acousto-optic modulators in the reference branch. Both
signals are coupled into a 2 by 1 fiber coupler.

3.4 Experimental results

In Figure 3.4 the group delay is plotted as a function of aspect ratio for
4 different wavelengths. The origin of the time axis is given by the de-
lay observed for pulses propagating through the reference holes. For all
wavelengths and aspect ratios a positive delay is found with respect to a
transmission through a reference structure. The delays observed range from
0.5 to 5.5 fs. Figure 3.4a and 3.4b for 760 and 780 nm illumination both
show a decreasing delay as the aspect ratio increases. The delay for pulses
of 810 nm (Figure 3.4c) shows a faint peak near aspect ratio 2. Figure 3.4d
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Figure 3.3: Typical interferogram, inset shows a zoom in of the interfero-
gram.

shows the results for pulses with a center wavelength of 830 nm. Here a
clear peak can be observed at aspect ratio 2.

We define the maximum enhancement of the group delay as the maximal
ratio between the observed transit times of the pulse through the structures:

f =
∆Tmax

∆Tmin
=

τmax + τoffset

τmin + τoffset
(3.1)

The minimum group delay τmin we find in our measurements is 1 fs. The
maximum delay τmax is 4.5 fs. Since these delays are relative to a reference
pulse propagating through air, for the real transit time of the pulse we need
to add τoffset=0.66 fs, the transit time of a pulse in air over a distance of 200
nm corresponding to the metal thickness. The enhancement of the pulse
delay is therefore a factor 3.

3.5 Finite difference time domain calculations

We used finite difference time domain (FDTD) calculations to complement
our experimental findings of the group delay. With a commercial finite
difference time domain package (CST Microwave Studio [63]). The trans-
mission of an ultra short femtosecond pulse through an infinite array of
subwavelength holes was calculated for various aspect ratios of the holes.
The dielectric constant of gold in this calculation was described with a
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Figure 3.4: The group delay measured for hole arrays with different aspect
ratio holes for a laser wavelength centered around a) 760 nm, b) 780 nm,
c) 810 nm, d) 830 nm. The error bars are the standard deviation over 100
measurements. The zero delay corresponds to a measurement on a large
reference hole.

27



Chapter 3

Drude model (ε∞ = 6.3718, ωp = 1.24941016 rad/s, Γ = 0.01421016 Hz).
The calculated field before and after the structure, respectively Ein(t) and
Eout(t), are Fourier transformed and used to determine the complex trans-
fer function of the structures via T (ω) = F[Eout]/F[Eout]. From which
the group delay can be determined as τg = darg[T (ω)]/dω. The result
of these calculations is shown in Figure 3.5. There is a convincing match
between the measurements (see Figure 3.4) and the FDTD results. In both
experiment and calculation the delay varies roughly between 0 and 6 fem-
toseconds. The trend of the group delay as a function of aspect ratio in
both cases shows a maximum, that shifts towards higher aspect ratio for
longer wavelengths. The slight deviation of the calculated values from the
observed values is attributed to the small uncertainty in the experimental
determination of the geometry of the holes.
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Figure 3.5: The group delay as calculated with FDTD technique as a func-
tion of aspect ratio for 4 different wavelengths, 760 nm (grey), 780 nm
(red), 810 nm (green) and 830 nm (blue).

3.6 Second harmonic generation

In Figure 3.6 the results of the SHG experiment are plotted. Figure 3.6a
shows the second harmonic generated intensity and the transmitted fun-
damental intensity as a function of the incoming fundamental power. As
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Figure 3.6: The SHG signal versus the incident power shows a quadratic
dependence a). The SHG generated versus the measured group delay for
three different wavelengths , b) 780 nm, c) 810 nm, d) 830 nm. All three
graphs show an increase of the SHG signal as the group delay increases.
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expected the SHG intensity shows a quadratic dependence on the funda-
mental input power. Figures 3.6a, b and c show the SHG signal normalized
to the incoming fundamental power squared as a function of group de-
lay for 3 different wavelengths. In all three graphs the SHG signal shows
a strong increase with group delay. This is in good agreement with our
hypothesis that the group delay leads to an increase in nonlinear effects.
Unfortunately, due to the small delays observed it is not possible to verify
the exact relation ship between group delay and the nonlinear effect from
the measured data.

3.7 The role of attenuation

When determining the group delay from either measured or calculated data
one has to be careful in case attenuation plays a role. The reason is that
a combination of group velocity dispersion and attenuation can cause a
delay of the pulse envelope in addition to the delay caused by the group
velocity itself. As the group delay is expected to play a role in the SHG
efficiency of the hole array, it is important to find out how large the ef-
fect of attenuation is on the observed delay. To do this we emulate the
performed experiment with the help of the results obtained in the FDTD
calculation. We determine the delay of a 100 femtosecond Fourier-limited
pulse Ein(ω), using the transfer function T (ω) and the normalized transfer
function N(ω) = T (ω)/|T (ω)|. To determine the electric field of the trans-
mitted pulse in the time domain we calculate Eout(t) = F−1[Ein(ω)T (ω)].
From the calculated value of Eout(t), the group delay is determined. This
procedure is repeated for the normalized transfer function. The difference
in delays calculated for the normalized and not normalized transfer func-
tion is always smaller than 150 attoseconds, well within the experimental
error. More information on the role of attenuation, also in case of not
Fourier-limited pulses and with the interferometric technique used, is given
in Appendix A.

3.8 Conclusion

We have investigated the influence of hole shape on the group delay of fem-
tosecond pulses propagating through hole arrays. We observed a maximum
delay that shifts to larger wavelengths for holes with larger aspect ratio.
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This is in agreement with theoretical work that predicts the presence of a
resonance at the cutoff frequency of subwavelength holes [64]. By tuning
the aspect ratio of the holes, the cutoff frequency of the array is shifted.
This shifts the associated resonance through the measurement window. Ad-
ditionally we observed that as the group delay of the pulse increases the
amount of second harmonic generated rises. We interpret the result as a
strong indication that the second harmonic is generated in the localized
resonances present in holes.
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Transition radiation

The radiation generated by an electron moving through the interface
between two media with a different dielectric constant is derived. The
aim is to investigate how this transition radiation can be used as a
tool to study nanoplasmonic structures.

When a charged particle moves through a medium with a velocity higher
than the velocity of light in the medium it will radiate light. This radiation
is called Cherenkov radiation and for the discovery and interpretation of
the effect Cherenkov, Tamm and Frank received the 1958 Nobel prize. A
different effect occurs when a charged particle passes through the interface
between two materials with different dielectric constants. Then, irrespec-
tive of the speed of the particle, radiation is generated. This light is called
transition radiation and was first theoretically described by Ginzburg and
Frank in 1944 [65, 5].

In this chapter the generation mechanism of transition radiation is ex-
plained. The analysis yields insight into the relevant spatial length scales
on which transition radiation is generated. The result is important for the
understanding of the experimental work presented later in this thesis. In
the first three sections the field of a moving point charge and the generated
transition radiation field are derived and interpreted. In the fourth section
a comparison is made between transition radiation and the radiation from
a dipole source. The chapter ends with a discussion of the results in the
perspective of using the transition radiation as an experimental technique
in nano-optics.
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4.1 The field of a moving point charge

To derive the field of a charged particle moving through the interface be-
tween two media, we first derive the field in each medium separately. We
will consider a point charge q moving with a non-relativistic constant veloc-
ity v along the z-axis (see Figure 4.3). It is assumed that µ = 1 everywhere
in space, i.e., the materials we consider are non-magnetic. The source terms

e-

ε

z

x

y

Figure 4.1: A charge moving along the z-direction in a homogeneous
medium with dielectric constant ε.

in the Maxwell equations are

ρ = qδ(z − vt)δ(x0)δ(y0) and (4.1)

J = qvδ(z − vt)δ(x0)δ(y0). (4.2)

Where ρ and J are the charge and current distribution. v is the absolute
value of the velocity vector v. To calculate the field of a moving point
charge we will use the vector potential A defined as

H = ∇×A. (4.3)

where H is the magnetic field. Combined with Maxwell equation for the
curl of E it is possible to write the electric field as

E = −µ0
∂A
∂t

−∇φ. (4.4)

In which φ is a scalar potential. It will turn out to be convenient to use
the Lorenz gauge:

∇ ·A + ε0ε
∂φ

∂t
= 0. (4.5)
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Substituting 4.3 and 4.4 in the Maxwell equation for the curl of H and
using the Lorenz gauge yields one wave equation for the scalar potential
and one for the vector potential,

∇2A− ε

c2

∂2A
∂t2

= −qvδ(z − vt)δ(x0)δ(y0) and (4.6)

∇2φ− ε

c2

∂2φ

∂t2
= − q

ε0ε
δ(z − vt)δ(x0)δ(y0). (4.7)

It is useful to perform a Fourier expansion of these expressions in time and
in the two spatial directions x and y perpendicular to the charge velocity.
Performing these expansions leads to

k2
xAk,ω + k2

yAk,ω −
∂2Ak,ω

∂z2
− ε

c2
ω2Ak,ω =

v
v

ei(ω
v

z) and (4.8)

k2
xφk,ω + k2

yφk,ω −
∂2φk,ω

∂z2
− ε

c2
ω2φk,ω =

q

ε0εv
ei(ω

v
z), (4.9)

where we have chosen (without loss of generality) x0 = 0 and y0 = 0. The
somewhat unusual exponent on the right hand side is due to the expansion
of δ(z−vt). The subscripts ω and k indicate that both potentials are now a
function of these two variables. For simplicity of notation these subscripts
will be omitted in the following derivation. The forced solutions to the two
inhomogeneous wave equations are

A =
q

c

v
v

(
k2

x + k2
y +

ω2

v2
− ε

c2
ω2

)−1

ei(ω
v

z) and (4.10)

φ =
q

ε0εv

(
k2

x + k2
y +

ω2

v2
− ε

c2
ω2

)−1

ei(ω
v

z). (4.11)

Substituting both solutions in Equation 4.4 yields the electric field of a
point charge q moving with constant velocity in a homogeneous medium

Eq =
qi

ε0εv

ωv
(

ε
c2
− 1

v2

)− kr

k2
r + ω2

(
1
v2 − ε

c2

) ei(ω
v

z), (4.12)

where the in-plane wavevector is given by kr = kx +ky. This equation can
be separated in components perpendicular (Ez) and parallel (Er) to the
surface:

Ez,q =
−qi

ε0ε

ω
(

1
v2 − ε

c2

)

k2
r + ω2

(
1
v2 − ε

c2

)ei(ω
v

z) and (4.13)
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Er,q =
−qi

ε0εv

kr

k2
r + ω2

(
1
v2 − ε

c2

)ei(ω
v

z). (4.14)

These results will be used later to derive the transition radiation. It is
however interesting to take a closer look at these equations. In Figure 4.2
the amplitude of Ez is plotted as a function of ω and kr in a dispersion
diagram for two values of the charge velocity. For the right graph there
is a large amplitude above the light line visible that corresponds to light
radiated in one specific direction. This contribution arises from the pole in
Equation 4.13 and 4.14

k2
r + ω2

(
1
v2
− ε

c2

)
= 0. (4.15)

We can derive the dispersion of this contribution by following this pole in
the ω − kr plane. This yields

kr,pole =
ω

c

√
ε− c2

v2
. (4.16)

If we assume ε is real, the parallel wave vector kr will be imaginary for
velocities of the charged particle below the phase velocity of light in the
medium (v < c√

ε
). For v > c√

ε
the parallel wavevector becomes real i.e.

the charge starts to radiate. This condition is exactly the condition for
Cherenkov radiation.

The generation of Cherenkov radiation is also visible in the real space
expressions for the fields of a moving charge. These real space expressions
can be found by performing the inverse Fourier expansion in the x- and
y-direction. This unfortunately has no closed expression in Cartesian co-
ordinates, therefore we derive the result in cylindrical coordinates, using a
Fourier-Bessel Transform. For the z-oriented field this leads to

Ez,q =
−qi

ε0ε
eiω z

v K0(rω

√
1
v2
− ε

c2
), (4.17)

with K0 the modified Bessel function of the second kind and r the radial
position. For the field in the radial direction the Fourier Bessel transform
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Figure 4.2: The amplitude of the electric field Ez as a function of the par-
allel momentum kr and the frequency ω, the figures can thus be considered
dispersion diagrams. In both graphs the dielectric constant of the medium
is ε = 8. Notice that the color scale is logarithmic. a) Electric field for an
electron velocity of 1

3c. b) Electric field amplitude for an electron velocity
of 2

3c. When the velocity is above the phase velocity of light in the medium
Cherenkov radiation is generated. The black dashed line is the light line in
the medium.

37



Chapter 4

leads to

Er,q =
−qi

vε0ε
eiω z

v

(
− 1

2
πω

√
1
v2
− ε

c2
I0(rω

√
1
v2
− ε

c2
)

+ r−1
1F2

(
1;

1
2
,
1
2
;
1
4
r2ω2(

1
v2
− ε

c2
)
))

, (4.18)

with I0 the modified bessel function of the first kind and 1F2 a hypergeomet-
ric function. For a real valued argument, both I0 and K0 are monotonically
decreasing functions and have no oscillating terms. This is in agreement
with the fact that the field of an electron moving with constant speed is
not radiative. The hypergeometric function is also decreasing monoton-
ically as a function of radius. The modified Bessel function of the first
kind I0 contains the term

√
1
v2 − ε

c2
in its argument. When the velocity

becomes higher than the phase velocity in the medium i.e. v > c
n this term

becomes imaginary. An imaginary component in the argument of the mod-
ified Bessel functions of the first kind will lead to an oscillatory behavior,
i.e. the field will become radiative. For the conditions we are interested in
in this thesis the Cherenkov radiation will turn out to be a minor effect.
For gold as a medium at wavelengths above 500 nm and an electron ve-
locity of c

3 the imaginary part of the term
√

1
v2 − ε

c2
is less than 5 percent

of the real part of this term. In vacuum this term is obviously completely
real. Therefore, within the experiments described in this thesis very little
Cherenkov radiation is expected to be generated. However, the derivation
of transition radiation in the next section will not make any assumptions
that will exclude Cherenkov radiation.

4.2 The field of the transition radiation

In the previous section we have seen that the field of the electron depends
on the dielectric constant ε. Transition radiation occurs because of the
mismatch between the field of the electron above and below the interface
separating two media with different dielectric constant. In a mathematical
sense, the expression for transition radiation is derived by imposing that the
field of the electron in the two media plus the field of the transition radiation
should fulfill the usual boundary conditions at the interface. Please note
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that as a consequence, it is the interface that acts as the source for the
transition radiation. The field of the transition radiation in both media is
described by

Etr,z = a1,2e
±iz

√
ε1,2ω2

c2
−k2

r and (4.19)

Etr,r = ∓a1,2
kr

k2
r

√
ε1,2ω2

c2
− k2

re
±iz

√
εvω2

c2
−k2

r . (4.20)

One has to be careful choosing the signs in Equation 4.20 to be sure to use

e-

ε1 ε2

z

x

y

Figure 4.3: A charge moving along the z-direction across an interface be-
tween two media with dielectric constant ε1 and ε2.

waves propagating away from the interface, therefore for z > 0 the upper
signs and for z < 0 the lower signs should be used. The coefficients a1

and a2 for the first and second medium can be derived from the boundary
conditions for the field perpendicular and parallel to the interface (z = 0)
which in our notation reads

ε1E
(1)
z = ε2E

(2)
z , (4.21)

kr ·E(1)
r = kr ·E(2)

r . (4.22)
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Solving this set of equations for a1 using Equations 4.14, 4.13, 4.20 and
4.19 leads to the following expression

a1 =

iq
ωε0

v
c

k2
rc2

ω2
ε2−ε1

ε1

(
1− v2

c2
ε1 + v

c

√
ε2 − k2

rc2

ω2

)

(
1− v2

c2
ε1 + k2

rv2

ω2

)(
1 + v

c

√
ε2 − k2

rc2

ω2

)(
ε1

√
ε2 − k2

rc2

ω2 + ε2

√
ε1 − k2

rc2

ω2

) .

(4.23)
This equation, substituted in Equations 4.20 and 4.19 completely describes
the transition radiation in the half-space z < 0. These results are plane
wave expansions of the transition radiation field and are therefore functions
of kr.

4.2.1 Dispersion diagrams for the transition radiation

In this section we will describe more specifically the situation in which an
electron moves through the interface between vacuum and gold. For the
numerical evaluation we use a measured value of the dielectric constant of
gold [10]. The expressions for the fields Ez and Er are functions of the
frequency ω and the parallel wave vector kr. In Figure 4.4 the amplitude
of the electric fields is plotted as a function of ω and kr in a dispersion
diagram for two different values of the distance z above the interface. For
distances high above the surface the field is mostly located above the light
line (z = 10 µm, Figures 4.4 a,b). This is fully expected since at this height
all evanescent modes have decayed and only propagating light is present.
At very short distances above the surface (z = 1 nm, the two top figures)
the most conspicuous feature is the sharp maximum that lies close to the
light line. This maximum behaves like a surface bound mode as it drops as
a function of altitude. In the next section we will see that this turns out to
be the surface plasmon polariton (SPP) mode. At larger wavevectors, far
below the light line, the values of |Ez| and |Ez| clearly have a non-negligible
value (see also the cross section in Figure 4.5). The ’waves’ associated with
these large wavevectors are not surface plasmon polaritons or light in one
of the media. They are essential in fulfilling the boundary condition on the
surface when the highly localized field of the electron passes through the
interface. These type of ’waves’ were also noticed in theoretical work on
dipoles above metallic surfaces [21] in which context they were named lossy
surface waves. These waves were also discussed in section 2.5.
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Figure 4.4: The amplitude of the electric field as a function of the parallel
momentum kr and the frequency ω. a,b) at a distance of 10 µm above the
interface, c,d) at 1 nm above the surface. The left figures are for the field
components parallel to the interface (Er), the figures on the right side are
for the perpendicular components of the field (Ez)
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Figure 4.5: Cross sections of dispersion diagrams at 1 nm above the surface
for a wavelength of 800 nm. a) Er, b) Ez. Clearly visible is the resonance
of the surface plasmon

4.2.2 The expression for transition radiation

More insight in the physics of transition radiation is obtained by taking a
closer look at Equation 4.23. We first consider the poles of the equation.
The pole introduced by the third term in the denominator in 4.23 gives
rise to the SPP contribution. This term is identical to the denominator in
the Fresnel reflection coefficient for P-polarized light [12] and its dispersion
is well known to describe the dispersion of SPPs. The two other terms in
the denominator cause poles as well. As it turns out, both poles have the
same dispersion as the Cherenkov radiation (see Section 4.1). These poles
describe the Cherenkov radiation generated in the upper and lower half
space.

It is important to realize that we are dealing with a forced solution of
the Maxwell equations since the position and speed of the charge are fully
specified. The homogenous solutions of the system are propagating plane
waves in both media and the surface plasmons polaritons at the interface.
The solution in Equation 4.23 is a solution of the inhomogeneous system.
When the driving field - the moving electron - overlaps well with one of
the homogeneous solutions of the system, for instance an surface plasmon
polariton mode, it is intuitively clear that this mode will be efficiently
excited. This explains the high field amplitudes at the surface plasmon
dispersion curve in Figure 4.4. The large wavevector contribution - the lossy
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surface waves - are no solution of the homogenous system and therefore they
will decay quickly in space.

The concept of the matching boundary conditions and specifically the
matching of parallel momentum gives us a conceptual picture of what hap-
pens in more complicated structures. The moving electron being a point
source will in a plane wave expansion have an infinitely broad distribution
of wavevectors. Consequently, the boundary mismatch between the field
of the electron above and below the surface will in general have a broad
distribution in k-space. In any structure transition radiation fields will be
generated that enable the boundary conditions to be fulfilled. In the system
studied until now we can distinguish 3 different regimes according to the
size of the wavevector. The first regime is that of plane waves described by
kr <

√
εω

c . To match the boundary condition for these smallest wavevec-
tors, plane waves have to be generated. In the region in k-space just below
the light line surface plasmon polaritons are ’used’ to fulfill the boundary
conditions. To satisfy the conditions for the field close to the electron,
the wavevectors with kr >>

√
εω

c are needed. These are the lossy surface
waves described before. We can now understand that using the term ’wave’
for these is perhaps somewhat misleading as our wave-like interpretation
originates from that fact that we derived the transition radiation field as a
plane wave expansion. They mainly represent the highly localized field of
the electron. This contribution can however be scattered, for instance in
structures where the dielectric constant varies rapidly in space.

4.3 Transition radiation in real space

To further understand the transition radiation microscopy technique we
need to know the field in real space. Especially the excitation of surface
waves by the moving electron is of interest since these surface waves can
scatter at plasmonic structures on the surface. In Section 4.2 we obtained
Equation 4.23 describing the electric field of transition radiation as a plane
wave expansion. Deriving the electric field in real space implies perform-
ing a double inverse Fourier transform of this equation in the kx and ky

direction. For the parallel component of the electric field this equates:

Er(r) =
∫∫ ∞

−∞
Er(kr)ei(kxx+kyy)dkxdky (4.24)
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where

Er(kr) =
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√
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√
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rc2
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(4.25)
with k2

r = k2
x + k2

y. For the perpendicular component of the field a similar
expression can be derived. Performing the Fourier integral analytically
is very challenging. A comparable problem, the field of a dipole radiating
above a surface, has not been solved analytically yet, which makes us believe
that a fully analytical solution of our problem is not likely to be obtained.
We can find part of the solution analytically however as we will show. For
the complete solution we will perform the integral numerically.

4.3.1 Numerical solution of the Fourier integral

Making use of the rotational symmetry of the problem, the two fold integral
of Equation 4.25 can be shown to reducible to a single integral that is
equivalent to a Fourier-Bessel integral. The field then equates:

Er(r) = 2π

∫ ∞

0
Er(kr)krJ0(krr)dkr, (4.26)

where J0 is the zeroth order Bessel function of the first kind. As discussed
before the value of Er(kr) has a non negligible contribution for large k val-
ues (although limkr→∞Er(kr) = 0). To perform the integral numerically
we introduce an smooth cutoff in reciprocal space at kmax. This automat-
ically means that the result for distances below r = 2π

kmax
will be incorrect.

We have to note here that there are physical reasons that at these small
distances our model is no longer valid as well; in the regime described by
these large wavevectors spatial dispersion plays a role and this is not in-
cluded in our model. A complication in performing the integral numerically
arises as the Bessel function J0(krr) for large values of r becomes a rapidly
oscillating function. Using a quadrature method the integral was found
to converge independently of the cutoff value kmax chosen in the range
between 100 nm and 5 µm. The results are shown in Figure 4.7.
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4.3.2 Analytical solution of the Fourier integral

Although a complete analytic solution will not be derived here we will show
that it is possible to find an analytic expression for the contribution of the
poles of Equation 4.25. The most feasible way of solving integral 4.24 is
probably by performing a contour integral [27]. Firstly we will rewrite the
integral, using some useful properties of the Bessel function J0 (see for
instance [20]),

Er(r) = π

∫ ∞

−∞
Er(kr)krH0(krr)dkr, (4.27)

where H0 is the zero order Hankel function of the first kind. In Figure 4.6
the path of the contour integral we want to perform is shown. As usual
the integral over the contour for the half circle will not contribute to the
integral. There are however 3 poles and 3 branch-cuts within the plane all
of which have a contribution to the integral [26] therefore the field in real
space will be

Er(r) = Ech1 + Ech1 + Esp +
∑∫

Γn

f(kr)dkr, (4.28)

where Ech1, Ech1 and Esp are the contributions of the poles to the contour
integral and the integrals over the paths Γn are the contributions arising
from the integrals around the branch cuts. We will not evaluate the contri-
bution of the branch cut integrals, but the contribution of the poles can be
determined by determining their residues. The positions of the poles are

kch1 =± k0

√
ε1 − c2

v2
, (4.29)

kch2 =± k0

√
ε2 − c2

v2
and (4.30)

ksp =± k0

√
ε2ε1

ε1 + e2
(4.31)

with k0 = ω/c. The first two poles originate from the Cherenkov terms the
third is the surface plasmon polariton. The contribution of the poles to the
integral is in all cases of the form

Epole = βpoleH0(kpoler) (4.32)
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Figure 4.6: Schematic of the paths of the contour integration in the complex
plane of kr. The crosses indicate the positions of the poles. The two branch-
cuts are indicated with the dashed lines.

where βpole is a complex coefficient that is an elaborate function of the
electron velocity and the dielectric constants of both media. We give here
only the result for the surface plasmon pole on the surface (z=0)

Esp =
2qvπ2ω

ε0c3

(ε1ε2)
3
2

(ε1+ε2)
5
2

(
1− v2

c2
+ v

c

√
ε2
2

ε1+ε2

)

(
1− v2

c2
ε2
1

ε1+ε2

)(
1 + v

c

√
ε2
2

ε1+ε2

)H0(kspr). (4.33)

In analogy with the work by Lalanne et al. and Gravel et al. [24, 26] we
assume that in this way we have isolated the contribution of the surface
plasmon polariton. Strictly speaking the remaining integrals for the branch
cuts could completely change the final result. To verify this we will compare
the contribution of the poles with the results from the numerical integration.

4.3.3 Surface waves generated by transition radiation

In Figure 4.7 the results of the analytic and numerical approach are plotted
for 6 different wavelengths. As can be seen the result of the numerical cal-
culation (dots) and the contribution of the SPP pole (dashed line) overlap
very well, especially in the region r > λ/2. In principle the contribution
of the two other poles to the result should lead to an even more accurate
description. Strangely enough this is not the case as the numerical results
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deviate considerably from the red line. In this regime however the contri-
bution of the branch cut integrals is expected to be considerable as well, as
these describe the evanescent field of the moving electron. This is the large
wavevector contribution discussed in the end of section 4.2.2. Notice that
for the longest wavelength (905 nm) the difference between the numerical
results and the SPP pole is an oscillating function. This difference remains
visible up to a distance of 3 µm. We believe that this difference is the same
surface wave as Lalanne and Co-workers noticed (see Section 2.5). From
the presented results we conclude that the field on the surface is very well
described by surface plasmon polaritons at distances larger than λ/2. Be-
low λ/2 we have numerical results that give us reliable values for the fields
at the surface up to distances of 100 nm to the source.

4.4 Comparison of the transition radiation with
the field of a dipole

Since the electron acts as a very local source one might wonder whether the
field generated is similar to the field generated by an oscillating dipole close
to the surface. First of all this could be of interest in a conceptual way.
Radiation from a dipole source is something many people in the nano-optics
field are more familiar with than transition radiation. Secondly, a range
of applications exists in which dipoles close to a plasmonic surface play an
important role. Since it is experimentally difficult to know where dipoles
are located on the surface, it would be useful if the transition radiation
technique -in which the electron beam can be pointed at any arbitrary
position- is capable of measuring similar properties. A comparison between
the radiation pattern of a oscillating dipole oriented perpendicular to the
surface and the radiation pattern of the transition radiation is therefore
useful.

The power of the transition radiation radiated in the far-field ([66] p.30)
is

Wq(θ) ∼ sin2(θ)

∣∣∣∣∣∣
1 + r

1− v
c cos(θ)

−
√

1− r2

n− n2 v
c

√
1− sin2(θ)

n2

∣∣∣∣∣∣

2

, (4.34)

where n is the refractive index of the medium, r the Fresnel reflection
coefficient for p-polarized light, θ the angle with respect to the surface
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Figure 4.7: Theoretical calculations of the parallel component of the transi-
tion radiation on the surface for 6 wavelengths (405, 505, 605, 705, 805 and
905 nm). Numerical results (dotted-line), SPP-pole contribution (dashed-
line), Contribution of all 3 poles (red-continuous-line).
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normal. The power radiated in the far-field for a dipole in vacuum, oriented
perpendicular to a surface is given by ([12] p.350):

Wdip ∼ sin2(θ)
∣∣∣e−iz0nk0 cos(θ) + reiz0nk0 cos(θ)

∣∣∣
2
, (4.35)

with k0 = w
c and z0 the hight of the dipole above the surface. When we

take the limit of z << 2π
k0

in the case of the dipole and v
c << 1 in case

of the transition radiation the radiation patterns are identical for r ≈ 1.
The radiation pattern of the transition radiation can therefore be consid-
ered the same as the pattern of an dipole oriented with its dipole moment
perpendicular to the interface placed much closer than a wavelength to the
interface when the electron velocity is low and the interface is highly reflec-
tive. For gold at wavelengths above 600 nm this last condition is certainly
satisfied.

The resemblance of the radiation patterns is a promising fact. The
more interesting contribution of SPPs and lossy surface waves is however
not described by them. A more thorough approach is is therefore worth
some effort. The field of a dipole close to a surface can be derived using
a Green tensor method. The parallel component of the electric field for a
dipole with its dipole moment oriented in the z direction is then given by
[12]

Er,dip =
iµdip

8π2εε0
kr

(
∓ e

±i
√

ω2

c2
ε−k2

r(z−z0)+

ε1

√
ε2 − k2

rc2

ω2 − ε2

√
ε1 − k2

rc2

ω2

ε1

√
ε2 − k2

rc2

ω2 + ε2

√
ε1 − k2

rc2

ω2

e
i
√

ω2

c2
ε−k2

r(z+z0)

)
. (4.36)

Here µdip is the dipole transition moment, z0 is the height of the dipole
above the surface and the upper signs apply for z > z0 and the lower signs
apply for z < z0. This equation should be compared to 4.25. Most impor-
tantly it has same denominator as is present in Equation 4.25. The pole

introduced by ε1

√
ε2 − k2

rc2

ω2 + ε2

√
ε1 − k2

rc2

ω2 = 0 is also in this case related
with excitation of surface plasmons. With a z-oriented dipole efficient ex-
citation of SPPs is therefore expected as well. Of course no Cherenkov
radiation term is expected in the expression for the dipole radiation, which
explains the absence of any other poles. The lossy surface waves are also
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present in radiation of the dipole [21]. Their amplitude is mathematically
not identical to their amplitude in the case of transition radiation. In both
cases however the behavior under the light line away from the SPP pole is
smooth and slowly converging to 0 for kr →∞. To conclude, the transition
radiation and the radiation of a dipole on the surface most definitely have
many features in common and the analogy between both is a useful one,
both are however not equivalent.

4.5 Transition radiation for nano-optics

The attractive part of the use of transition radiation as a microscopy tool in
nano-optics is the extremely high resolution with which an electron beam
can be focused and positioned. In a typical electron microscope this reso-
lution can be smaller than 10 nm. The scale at which optical information
is acquired, depends on the length scales on which the optical properties of
the structure under investigation vary. In principle when the structure has
features that are abrupt they are capable of scattering the large wavevec-
tors produced around the impact position of the electron. Therefore also
the resolution of this technique will be close to 10 nm. Another way of
picturing the high resolution of the transition radiation microscopy, is that
the near field components of the electron can be scattered by the structure.

The analytical method to derive the electromagnetic fields of transition
radiation on a plain surface was chosen because it gives the best insight into
the physical processes that play a role. Numerical techniques are available
that are more suitable for calculating transition radiation on metal surfaces
with plasmonic structures. The boundary element method (BEM) is the
current state of the art technique for performing such calculations [67, 68].
This method is however up to now only practical for cylindrical symmetric
and 2 dimensional systems [69].

In the end of Section 4.2.2 the boundary conditions on the interface were
employed as a tool to intuitively understand the generation of transition
radiation. In that section the emphasis was on the boundary conditions in
k-space. In many nano-optic structures it might be more suitable to view
the same effect in real space, where the continuity of the perpendicular
component of D and the parallel component of E across the surface are the
boundary condition. This way one can understand that the moving electron
is also capable of exciting for instance localized plasmonic resonances. In
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this thesis we will investigate small holes in a plain gold layer. When
considering transition radiation as a microscopy tool on such structures we
can consider two regimes. When the electron passes through the interface
far away from the hole, we can consider the hole as a small perturbation
with respect to the situation discussed in this chapter, an infinitely large
plain surface. When the electron passes through the surface close to the hole
we can no longer consider the hole as a small perturbation. A discussion
involving the more practical aspects that play a role in the interpretation
of transition radiation microscopy data is given in Chapter 5.
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Transition radiation
microscopy

Practical information on the use of transition radiation as a mi-
croscopy tool is discussed. The principle of operation is explained.
Technical specifications of the optical system and the electron micro-
scope are given.

5.1 Introduction

The past 20 years the field of nano-photonics has been a rapidly grow-
ing field. The spectacular improvements in nano-fabrication techniques
went hand in hand with the development of new methods to study op-
tical systems beyond the diffraction limit. Techniques such as near-field
scanning optical microscopy [70] and specialized fluorescence microscopy
techniques [71] are nowadays well established experimental techniques. In
nano-plasmonics, apart from the all optical techniques available in nano-
photonics, various techniques have been developed that use electron beams
to acquire optical information. These techniques all employ the high spatial
resolution that can be obtained with electron microscopy. Although tech-
niques to study surface plasmon polaritons with electron beams have been
available since the 1960s [72], only recently the value of these techniques
for research on nanoplasmonic systems has become widely recognized in
the plasmonics community [4, 73, 74, 75].

The measurement technique described in this chapter is based on the
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detection of light that is generated by the impact of a focused electron beam
on a nanoplasmonic sample [76, 77]. This method of detection of electron
beam induced light is historically referred to as cathodoluminescence. This
term is however somewhat misleading because the light detected in these
methods does not originate from the cathode and is not necessarily lumines-
cence either. In the experiments described in this thesis the light generated
is transition radiation (see Chapter 4), therefore throughout the rest of this
thesis the term transition radiation will be used.

In this chapter the method of measuring transition radiation as used
in this thesis will be described. Firstly there will be a compact general
introduction into the basic principle of transition radiation microscopy for
nano-optics. Second there will be a description of the used setup, and the
experimental technique including some basic results.

5.2 Principles of operation

In the experiments described in this thesis the observed light is transi-
tion radiation. There are many other mechanisms by which optical radi-
ation can be formed under impact of an electron beam, for instance ther-
mal, fluorescent or phosphorescent processes [78], Cherenkov radiation and
bremsstrahlung. In principle all of these processes can be used as a mi-
croscopy tool as described in this chapter. The samples investigated in this
thesis have gold as their main constituent. For this material no fluores-
cent or phosphorescent processes are expected in the wavelength regime
of interest. Thermal effects can be excluded based on the fact that even
after long periods of measurement the samples under investigation show no
thermal damage. Brehmstrahlung is under normal conditions in a SEM —
perpendicular incidence of the electron beam and non-relativistic electron
velocities— much weaker than transition radiation [79]. Cherenkov radia-
tion was shown in Chapter 4 to have a minor contribution but in all cases
it is included in the models that we will use to interpret our experiments.

5.3 Transition radiation microscopy

The experimental technique is illustrated in figure 5.1. Two contributions
of transition radiation generated by the electron beam to the detected light
can be distinguished. Firstly there is a directly radiated part that emerges
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e-

Scattered SPPDirect TR

electron beam

Gold

parabolic mirror

Figure 5.1: Schematic illustration of the measurement mechanism. At the
position of the electron beam direct transition radiation (TR) is generated as
well as surface waves (mostly surface plasmon polaritons). The SPPs can
scatter to light at for instance a protrusion on the surface. Both radiating
components are collected by the parabolic mirror. In this schematic illus-
tration the distance between the position where the electron beam hits the
sample and the protrusion where the SPP is scattered, is out of proportion
with respect to the size of the parabolic mirror. In the actual configuration
the collection spot of the parabolic mirror is much larger than the distance
between electron beam and protrusion.
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from the point of electron impact. Secondly, a surface wave part that —
on a planar surface— will manifest as an outward traveling surface wave.
At distances larger than the wavelength of the light this contribution is
mainly due to surface plasmon polaritons excited by the electron beam.
The generated surface waves can scatter on for instance a roughness on the
surface and thus couple to free radiation that will be detected. The two
contributions to the generated light are collected with a parabolic mirror
and directed towards a spectrometer. The measured light is therefore the
interference between the light generated directly by the electron beam and
the light generated by the scattering of surface waves [80]. The small focus
of the electron beam enables a highly localized excitation process, therefore
the generated light is characteristic of the local properties of the sample at
the position of the electron beam. By raster scanning the position of the
electron beam over the sample a spectrum can be recorded at every position
of the sample. In this experimental technique the exact position where the
light is emitted is not known. The high resolution is achieved by using a
local ’excitation’ of the sample rather than a local detection.

Spectrometer

CCD

SEM pole piece

Vacuum

Sample

Lens
Parabolic

mirror

Polarizer
e-

Figure 5.2: Schematic representation of the setup for the detection of elec-
tron beam-induced light. In the vacuum chamber of the SEM the sample is
bombarded with a focused beam of electrons. The light generated is collected
with a parabolic mirror. This mirror has a small hole in it, that allows the
electron beam to pass through the mirror to the sample. The light collected
by the parabolic mirror is directed through a vacuum window to spectrometer
that is equipped with a CCD camera.
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5.4 Instrumental information

The setup used for the measurements is a FEI XL30 SFEG scanning elec-
tron microscope equipped with a cathodoluminescence system by Gatan.
A parabolic mirror with a working distance of 1 mm is placed under the
pole piece of the SEM. In the parabolic mirror there is a hole with a di-
ameter of 1 mm to enable access of the electron beam to the sample. The
spectrometer used is a 300nm f/4.2 imaging spectrometer with a Prince-
ton Instruments Spec10:100 front illuminated liquid nitrogen cooled CCD.
The dispersing grating used has 150 lines/mm which results in a spectrum
ranging in wavelength roughly from 400 to 950 nm. The entrance slit is set
to 2 mm to collect maximal signal, the corresponding spectral resolution is
limited by the point spread function of the optical system and is estimated
to be 10 nm.

The measurements are done with settings of the SEM that maximize
the amount of signal collected. Therefore the highest acceleration voltage
of 30kV is used, which leads to an electron velocity of approximately a third
of the velocity of light. Further settings of the microscope are chosen to
maximize the beam current. According to the specifications of the micro-
scope the corresponding beam current is approximately 40 nA. The beam
waist at the point of the point of impact is 20 nm.

The parabolic mirror collects light in 1.4 π steradians [81]. Because the
parabolic mirror is asymmetric along the axis of the paraboloid, the optical
system has a slight asymmetry in the angle-dependent collection efficiency
along one axis.

In Figure 5.3a a typical spectrum measured on a plain surface of gold
is shown. Since we know the transition radiation spectrum from theory
we can compare the measured spectrum with the spectrum derived from
theory. There are a few unknown factors that relate the experiment with
the theory. Firstly the efficiency of the detection system, which includes the
transmission of the lens system, the reflection at 5 mirrors, the efficiency
of the grating and the quantum efficiency of the CCD of the spectrometer.
Secondly the exact beam current is unknown. Using the beam current
given by the specification of the SEM we calculate the detection efficiency
of the optical system (see Figure 5.3b). The maximum efficiency we derive
is 1.4%. This efficiency is very reasonable considering the large amount
of optics between sample and detector. We conclude from this that the
experimental conditions are well controlled and that the derived expression
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Figure 5.3: (a) Typical spectrum collected in measurement on a plain gold
film. (b) Detection efficiency spectrum of the optical system of the exper-
imental setup derived assuming a beam current of 40 nA. The efficiency
curve resembles the known quantum efficiency spectrum of the CCD detec-
tor.

for the transition radiation gives an accurate description of the mechanism
resulting in the observed light.
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Scattering of surface
plasmon polaritons on single
holes

We investigate the scattering of surface plasmon polaritons on single
cylindrical holes in metal layers. We use transition radiation mi-
croscopy to launch surface plasmon polaritons and measure the inter-
ference between the direct transition radiation and the scattered sur-
face plasmon polariton. We propose a simple model describing the
scattering properties of a hole by an effective dipole. A good qual-
itative match between model and experiment is found, allowing an
estimate of the effective polarizability of a single hole.

6.1 Introduction

The scattering of surface plasmon polaritons (SPP) on subwavelength holes
is a topic of great interest to the plasmonics community [82]. This is due
mainly to the large interest in the extraordinary transmission phenomenon
[1] (see also Section 2.6). It is generally accepted that the launching of SPPs
by light incident on a hole or emanating from a hole and the subsequent
scattering of these SPPs at neighboring holes is essential in describing this
effect [25]. Experimental results on the scattering properties of SPPs are
important as they could be used to verify and improve the proposed models.
Experimental investigations of the scattering of SPPs to light by single holes
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and the launching of SPPs by light are however very challenging [41, 22].
In Chapter 4 we have shown that at distances larger than roughly λ/4

the field on the surface of a metal, created by the passing of an electron
is mainly due to the SPPs that are excited with the transition radiation
microscopy technique. Within the wavelength range investigated, the con-
tribution of lossy surface waves was shown to be small. We thus have a
method to create a well-defined source of SPPs that can be used to study
the scattering properties of subwavelength holes.

In this chapter we investigate the scattering of SPPs on single cylindrical
holes in metal layers. We describe the experiment and discuss the results.
Furthermore, a model is proposed describing the scattering properties of a
hole by an effective dipole.

6.2 Transition radiation near a single hole

The sample under investigation is a cylindrically shaped aperture with a
diameter of 260 nm in a 200 nm thick layer of gold on a silicon substrate.
The measurement described in this chapter is a line scan of the electron
beam from the center of the aperture outwards (see Figure 6.1). At each
point along the line a spectrum is collected. Since in this chapter we are
interested in the contribution of the scattered surface plasmon polariton
we will discuss results obtained moving the electron beam further than 200
nm away from the aperture.

circular hole

Figure 6.1: Schematic representation of the measurement performed. The
electron beam was moved along a straight line from the center of the hole
outwards. At every position along the line a spectrum is collected.

In Figures 6.2, 6.3 and 6.4 the results of the performed measurement are
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shown. In Figure 6.2 we plot the value S(d, λ) = (Idet(d, λ)−Iplain(λ))/Iplain(λ)
where Idet(d, λ) is the detected spectrum at a distance d from the center
of the hole and Iplain(λ) is the spectrum detected far from the aperture.
The figure shows a normalized map of the spectrum as a function of the
distance from the center of the hole. In the map of S(d), fringes are visible
as a function of distance that have roughly a period λ/2. Cross sections
of the detected intensity Idet(d, λ) are shown for 4 different wavelengths in
Figure 6.3. In this graph a high intensity peak near the edge of the aperture
is visible. As this peak contains more contributions than the SPP alone,
we do not consider it here. To get a better view on the fringes in Figure
6.4 the value Idet(d, λ) − Iplain(λ) is plotted. Here one can observe that
the period of the fringes is roughly λ/2. The spacing between the minima
and maxima in the graph obtained for 597 nm are indicated with arrows.
Their spacing is 150, 120 and 120 nm ± 20 nm. A more detailed analysis
of the fringes is difficult due to the low signal and low number of fringes
observed. Figure 6.4 also shows that the fringes are placed on a background
that decays as the distance from the hole increases.
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Figure 6.2: Map of S(d, λ) = (Idet(d, λ) − Iplain(λ))/Iplain(λ) where
Idet(d, λ) is the detected spectrum at each position and Iplain(λ) is the spec-
trum collected on a plain gold surface. Fringes with a period equal to half
the wavelength are visible as a function of the distance. To enhance the
visibility of the fringes the color scale is saturated.
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Figure 6.3: Intensity of the collected transition radiation as a function of
distance to the center of the hole for 4 different wavelengths. The acquisi-
tion time for each data point was 2 seconds.
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Figure 6.4: Intensity of the collected transition radiation as a function of
distance to the center of the hole for 4 different wavelengths. The same data
as 6.3 but with the transition radiation from a plain gold surface subtracted
such that all graphs end at 0 CCD counts at 1.3 µm distance.
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6.3 The effective dipole scattering cross section

We propose a simple model to interpret the results described in the previous
section. In analogy with the results of Lalanne et al. [24] that showed good
agreement between the surface plasmon polariton scattering properties of
a slit and a line dipole oriented parallel to the surface, we model the small
hole as a dipole. The induced effective dipole moment is p = α(ω)E,
where α(ω) is the polarizability of the hole. E is the electric field of the
transition radiation at the position of the hole. We will use the fields on the
surface as calculated in Chapter 4 as the driving field of the effective dipole,
thereby assuming the hole to be a small perturbation on the unstructured
surface. The effective dipole can be either oriented in the plane of the
surface pointing towards the plasmon source (x-orientation) or oriented
perpendicular to the surface (z-orientation). In the first case the dipole
is driven by the longitudinal component of the SPP field, while in the
second case it is driven by the transverse component of the SPP field.
It is expected that α is frequency dependent as the scattering properties
will be dependent on de dielectric constant contrast between the hole and
vacuum. The intensity we detect is the far-field interference of the direct
transition radiation with the radiation scattered by the effective dipole.
We use the plane wave expansion of the expression for transition radiation
obtained in chapter 4 and the plane wave expansion of the field of a dipolar
light source on a surface [12]. We integrate over all the values of the in-
plane wavevectors kx and ky implicitly assuming that the parabolic mirror
collects the light in 2π steradians. Additionally we used the detection
efficiency as derived in Section 5. In this model the polarizability α(ω)
is the only free parameter, the amplitude of which is tuned manually to
obtain correspondence to the experimental results.

The results of this model are depicted in Figure 6.6 for a dipole oriented
in the plane of the surface and perpendicular to the surface respectively. To
enable a direct comparison with the experimental results depicted in Figure
6.4, in both figures Idet−Iplain is plotted. The polarizabilty chosen in these
models is 2 · 10−26Cm2/V for the z-oriented dipole and 1 · 10−27Cm2/V for
the x-oriented dipole independent of the wavelength. The polarizabilty can
have a complex value. Varying the phase factor leads to changes in the
phase of the fringe pattern that is observed in the figures, but not in the
general decaying trend. Therefore the phase of α in both figures was set to
zero.
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Figure 6.5: Schematic overview of the mechanism adopted in the model.
At the position of the electron beam both direct transition radiation and a
surface wave, consisting of mainly the surface plasmon polariton, are gen-
erated. The surface wave is scattered at the hole, this scattering is modeled
by a dipole with polarizability α that is driven by the field of the SPP at the
position of the hole.
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Figure 6.6: The distance dependence of the collected intensity for 4 different
wavelengths assuming (a) a dipole oriented perpendicular to the surface
with a polarizability αz = 2 · 10−26Cm2/V . (b) A dipole oriented in the
plane of the surface with its dipole moment pointing towards the hole and
a polarizability αx = 1 · 10−27Cm2/V
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The model describes the basic characteristics observed in the measure-
ment. Both in the measurement and the model oscillations with a period
equal to roughly half the wavelength are visible on a decaying background.
Additionally the relative strengths of the curves for different wavelengths
are correct; in both the measurement and the model the highest intensity
is observed for the wavelengths around 525 nm while the lowest signals
are observed at 890 nm. Most importantly it is possible to obtain an esti-
mate of the effective polarizability of the aperture. By changing the value
of α such that the intensities in the model are comparable to the mea-
sured value (in the range of 10 to 150 CCD counts) we obtain a value of
α ≈ 10−27 − 10−26Cm2/V.

Based on the model and the experimental results the current under-
standing of the results is as follows. The light scattered at the hole and
the direct transition radiation both have different radiation patterns. The
detected signal can be considered to consist of a part where both radia-
tion patterns overlap and a part where only light from either the direct
transition radiation or the dipole is observed. In the direction where the
radiation patterns overlap the interference of the two contributions leads
to an oscillation on the measured amplitude as a function of distance. The
period of this oscillation is dependent on the exact radiation patterns and
the angles collected by the optical system [80]. The directions in which the
radiation patterns don’t overlap lead to an offset contribution in the mea-
sured signal which gives rise to the increasing background as the distance
to the hole increases.

6.4 Discussion

Our model successfully describes the observed features in the experiment
and yields an estimate of the effective polarizability of a hole. This result
shows that we have a good understanding of the physics that plays a role
in our experiment. This is highly promising, but a better match between
measurement and theory would be valuable. The ultimate goal, obtaining
an accurate value for the effective polarizability is worth the effort. Several
improvements can be suggested for both the model and the experiment.
Further improvement of the experiment should be focused mainly on im-
proving signal to noise, for instance by improvements of the setup leading
to a larger detection efficiency. Alternatively longer integration times could
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be used. The most prominent improvements of the model could be done
by taking the acceptance angles of the mirror into account. Last but not
least, it would be worthwhile to check in a separate experiment or theory
what the orientation of the effective dipole is depending on hole size and
shape.
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Local investigation of
rectangular holes

The optical properties of rectangular subwavelength holes are studied
with transition radiation microscopy. Along the edges of the hole, high
peaks in the generated transition radiation are observed. The depen-
dence of the spectrum of these peaks on the dimensions of the hole is
investigated systematically. It is proposed that the measurement tech-
nique probes the scattering strength of the hole and that this strength
depends on the existence of waveguide modes in the hole.

Subwavelength apertures play a prominent role in nano-plasmonics be-
cause of their ability to couple far-field radiation to surface plasmon polari-
tons and as such have been the subject of intensive study [1, 25, 82]. To
gain insight into the electromagnetic fields around the aperture, numerical
techniques are available [83, 56]. Experimentally however, it is very chal-
lenging to measure the fields in and around apertures in the visible regime.
Some results have been obtained with near-field scanning probe techniques
[84, 40], but convolution with the probe collection efficiency limits the res-
olution that is obtained such that the effect of hole shape is difficult to
investigate.

Transition radiation microscopy has a superior resolution and can be
used to gain insight into the physics very close to these apertures [2]. In this
chapter we will present results of measurements on subwavelength holes in
gold in the near-field regime; when the distance to the hole is smaller than
λ/2. We will present results of measurements on a rectangular hole and a
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systematic analysis of the influence of hole shape.

7.1 Rectangular holes

The structures under investigation in this chapter are rectangular holes
fabricated with focused ion beam (FIB) milling in a 200 nm thick layer
of gold on a silicon substrate (see Figure 7.1). The actual dimensions
of these small holes are difficult to determine. From scanning electron
microscopy images (see for instance Figure 9.4) it is visible that the holes
are slightly tapered and that the edges of the holes have a smooth curvature.
This was confirmed by atomic force microscope measurements. Due to the
taper and the radius of curvature, it is hard to define the location of the
edge from AFM data. Therefore, the dimensions of the holes as quoted
in the presentation of the results in this chapter, are the original design
parameters. The deviation from design parameters is small, 10 to 25 nm,
and is caused mainly by the spot size of the focused ion beam and a scaling
factor that is chosen in the FIB milling. Since these deviations are small
and systematical, the design parameters give an accurate description of the
hole size.

Si substrate

200 nm Gold

Figure 7.1: Schematic side view of the system under investigation. A sub-
wavelength hole in a 200 nm thick layer of gold on a silicon substrate

7.2 Transition radiation microscopy on a single
rectangular hole

The results of a transition radiation microscopy measurement on a rectan-
gular hole with dimensions 100 x 260 nm is presented in Figures 7.2 to 7.4.
Figure 7.2a shows the intensity of light collected while raster scanning the
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electron beam over the sample. In this image the color indicates the total
number of integrated counts collected by the detector for each position of
the electron beam. Two cross-sections of this image are shown in Figure
7.3a. Both cross-sections run through the center of the hole, one along
its short axis and one along its long axis. Simultaneously with the optical
signal a SEM signal is collected, depicted in Figure 7.4. In the SEM image
3 positions are indicated by letters A,B and C. Spectra collected at these
positions are given in the graph in Figure 7.3b. Figure 7.2b shows the av-
erage wavelength at every pixel position. This data is constructed from the
spectra collected at every pixel position by taking the weighted average of
the corresponding spectrum. Because the spectra in these measurements
always show only one maximum an image of the average spectrum gives a
good qualitative insight into the measured spectra.
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Figure 7.2: (a) Intensity map of a rectangular hole of 100 x 260 nm. The
total intensity collected by the spectrometer is plotted, the graph contains
no spectral information. Maxima are visible along the long and short sides
of the hole.(b) Map of the average wavelength collected on a rectangular
hole of 100 x 260 nm. This map is constructed from the measured data by
calculating the weighted average of the spectrum at each position. This gives
good qualitative insight into the observed spectra. The spectra along the long
side are clearly red shifted with respect to the spectra collected further from
the hole.

In the measurements the most conspicuous features are the two large
maxima at the long side of the hole (see Figure 7.2a). At these positions

69



Chapter 7

a
−0.5 −0.3 −0.1 0.1 0.3 0.5

1.5

1.6

1.7

1.8

1.9

2
x 10

5
vertical cross section

horizontal cross section

Distance (μm)

In
te

n
si

ty
 (

C
C

D
 c

o
u

n
ts

)

b
400 500 600 700 800 900

100

120

140

160

180

200

220

Wavelength (nm)

C
C

D
 c

o
u

n
ts

A

B

C

Reference

A

B

C

Figure 7.3: (a) Cross sections of figure 7.2. Intensity of transition radia-
tion along two lines through the center of the rectangular hole. Cross section
along the short axis: dashed line. Cross section along the long axis: contin-
uous line. (b) Four spectra acquired at different positions on a rectangular
hole. A) Spectrum at position A at the peak in intensity at the long side of
the hole. B) Spectrum at the peak in intensity at the top side of the hole. C)
Spectrum at the center of the hole. Reference) Spectrum corresponds to the
background transition radiation obtained at the far corners of the image.
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Figure 7.4: Scanning electron microscopy image acquired simultaneously
with the intensity map of figure 7.2. With the letters A, B and C positions
are indicated where the spectra are as shown in figure 7.3b.

the signal collected is 25% higher than the signal collected on a plain gold
surface. The spatial extent of these maxima is very small; the full width
half maximum of these peaks is 120 nm (see Figure 7.3a). Apart from
the two maxima along the long side, also two smaller maxima along the
short side of the hole are visible in the intensity map. These two maxima
have a difference in intensity that based on the symmetry of the hole is
not expected. We attribute this small asymmetry to an angle dependent
collection efficiency of the parabolic mirror along one axis.

The spectra at the positions of the intensity maxima of the long side
(position A) and top side (position B) are shown in Figure 7.3b together
with a spectrum collected on a plain gold surface. Clearly there is a large
difference in the spectra at these different positions. The spectrum along
the long edge has a peak around 680 nm while the spectrum at the top side
peaks at 560 nm. All spectra measured have only a single maximum. In
Figure 7.2b it can be seen that indeed around the long edges a red shift
with respect to the spectrum far from the hole is visible. At the top and
bottom peaks along the short side of the hole the spectrum is blue shifted.

The results discussed for this particular hole are very general for all
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small (< 500nm) rectangular holes. All holes show single peaked max-
ima that are more intense as the side of the rectangle is longer. At the
sides of holes larger than 500 nm, the maximum along the side of the hole
shows multi modal behavior; for a single wavelength multiple peaks can be
observed in the spatial map. The results of these measurements are not
presented in this thesis. The high peaks at the side of the hole are reminis-
cent of the high fields that are found on the sides of the hole in theoretical
calculations [42]. Since the spectra at the long and short side of a rectan-
gular hole differ considerably, it is tempting to link these peaks and their
spectra with the two orthogonal waveguide modes of a rectangular hole.

7.3 Systematic investigation of the effect of hole
shape

To perform a systematic study of the role of hole shape a sample was made
in which the width and height of holes was varied between 50 and 600 nm.
At more than 100 holes with different dimensions a spectrum was collected
at the region besides the hole as indicated schematically in Figure 7.6.

Figure 7.5: Dark field image of a sample in which the hole size is system-
atically varied. Along the horizontal axis the width of the holes is varied
between 50 and 600 nm, while along the vertical axis the height is varied
over the same scale. The center to center hole separation is 4 µm.

The results of these measurements are shown in Figures 7.6, 7.7, 7.8
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and 7.9. As before, all the observed spectra are single peaked. We use the
mean wavelength measured in each spectrum as a qualitative measure of
the observed spectrum. This quantity gives a good qualitative view on the
measured spectra. Figure 7.6 is a color scale plot of the entire data set. It
shows the mean wavelength as a function of hole width and height. Cross
sections through this data set are shown in Figures 7.7 and 7.8. These
two figures show the mean wavelength as a function of the hole width
and height. Each figure contains multiple graphs for holes of respectively
different height and different width. Figure 7.7 shows the mean spectrum
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Figure 7.6: measured mean wavelength as a function of the hole dimen-
sions. The schematic figures of the hole illustrate how the size of the hole
varies throughout the figure, the red dot indicates the position where was
measured. The two white lines indicate the cutoff for 650 nm for the X-
mode (horizontal cutoff line) and Y-mode (vertical cutoff line).

at the right side of the hole as the width of the hole is changed. Clearly in
the range 300-600 nm the width of the hole has very little influence on the
spectrum collected. Below a width of 300 nm all the curves have a basic
different behavior depending on their height. Below 210 nm height the
mean spectrum decreases as the width is reduced. Above 210 nm height,
the mean spectrum first increases as the width is decreased in the region
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300-100 nm. Finally in the region below 100 nm width a small decrease is
visible for the 3 spectra with largest heights.

Looking at Figure 7.8 we see the mean spectrum detected as we excite
at the right side and vary the length of this side. Each curve corresponds
to a series of holes with a constant width. For the holes with widths 60
and 125 nm the mean spectrum decreases steeply for heights below 300 nm.
For holes with larger heights this trend is much less clear.

Furthermore the effect of the hole dimensions on the intensity of the
signal can be observed in Figure 7.9. In the figure the averaged intensity
over a region around the right side of the aperture is plotted versus the
height of this top side. Again the figure contains multiple graphs for dif-
ferent hole widths. The results show that as the hole height increases, the
intensity increases until it saturates at a width of 300 nm. This behavior
is similar for holes with different width.
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Figure 7.7: Mean wavelength of the spectrum collected at the right side of
the hole as a function of the hole width, for different hole heights. In the
five curves the hole height is 60 nm (B), 100 nm (+), 210 nm (×), 270
nm (◦) and 460 nm (C) respectively. Above a width of 300 nm the mean
spectrum shows little dependence on the width of the hole. Below 300 nm
the width of the hole has a large influence on the mean spectrum: below
a hole height of 200 nm there is a decrease in mean wavelength while for
holes with larger height a decrease in width leads to a red shift of the mean
spectrum.
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Figure 7.8: Mean wavelength of the spectrum collected at the right side of
the hole as a function of the hole height, for different hole widths. In the
four curves the hole width is 60 nm (B), 125 nm (+), 270 nm (×), 460
nm (◦) respectively.
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Figure 7.9: Measurement of the intensity of the transition radiation at the
right maximum of a rectangular hole as a function of the hole width, for
different hole heights. In the four curves the hole width is 60 nm (B), 125
nm (+), 270 nm (×), 460 nm (◦) respectively. The intensity is a dependent
on the height, especially in the range below 300 nm. The intensity is less
dependent on the hole width.

7.4 Interpretation

In Chapter 4 we found that the spectrum of the surface wave and the di-
rect transition radiation are not identical. Figure 7.10 shows the normalized
spectrum of the transition radiation and the surface wave at two different
distances from the impact site of the electron. We observe that the spec-
trum of the transition radiation has a mean wavelength that is to the red
of the spectra of the surface waves. Thus one would naively expect the
spectrum measured near a hole to become blue shifted if the hole scatters
the surface. This is opposite to what was observed in Figure 7.2b where
the spectra near the hole have a mean wavelength that is 630 nm while
the spectra further away have a mean wavelength of 620 nm. We conclude
from this that the shape of the holes must have an important influence on
the measured spectra.

The ability of subwavelength holes to scatter light to SPPs was discussed
in Section 2.6.1. Experiments by Baudrion and co-workers [41] showed that
the scattering of light to SPPs is considerably more efficient for larger holes
than for smaller holes. Moreover the highest efficiency for SPP launching by
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Figure 7.10: Transition radiation spectra at 3 different positions, normal-
ized to the peak value. Transition radiation spectrum, spectrum at the sur-
face 100 nm from the electron impact site, spectrum at the surface 150 nm
from the electron impact site. The detection efficiency is not taken into
account in these spectra.

the hole was observed at the cutoff wavelength of the hole. In an analogous
way the scattering of the field of the electron at the interface will depend
critically on the hole and the modes of the hole. A very small hole, for which
al wavelengths are above the cutoff wavelength will show less scattering
than a hole that has propagating waveguide modes. In Figure 7.6 the
mean wavelength as a function of hole size is plotted. The two curves
indicate the hole dimensions with a cutoff at 650 nm using the model that
was introduced in Section 2.6.1.

With the discussed behavior of the cutoff in mind we propose the fol-
lowing explanation of the observed dependence of the mean spectrum on
the dimensions of the hole. The transition radiation generated close to the
hole increases as there is a waveguide mode in the hole available. This
might seem counter intuitive as one might naively think that if there is a
waveguide mode light can only disappear. However, the fact that there is
a mode also means that the scattering of the hole increases. This increased
scattering leads to a larger intensity in the measurement. The spectrum
measured close the hole, is thus influenced by the waveguide modes of the
hole.

We now consider Figure 7.6. For the holes on the top right side, most
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of the wavelengths are above cutoff, decreasing their width, moving to the
top right side of the graph will lead to a red shift of the cutoff wavelength,
leading to a larger contribution of the long wavelengths to the spectrum
scattered from the hole. Starting in the lower right side, we are already be-
low cutoff for all wavelengths. Decreasing the width of the hole we observe
a blue shift of the spectrum. Here the reasoning is that a non-resonant
scatterer will always scatter short wavelengths more efficiently than long
wavelengths. Therefore decreasing the size of holes that are already in
cutoff will lead to a blue shift in the observed spectrum.

The qualitative reasoning above simplified the explanation to low scat-
tering below cutoff and high scattering above cutoff. These statements can
be refined further by realizing that the scattering depends on the specific
propagation properties of the waveguide and not solely on it being above
or below cutoff. Our approach is a useful tool to understand transition
radiation microscopy measurements near small plasmonic structures.

78



Chapter 8

Polarization-resolved
scattering from
subwavelength holes

The polarization of the transition radiation generated close to a small
rectangular hole is analyzed. Under the assumption that the light gen-
erated, is mostly scattered perpendicular to the surface, the results
show that the polarization of the light that is generated is mainly per-
pendicular to the edge at which the electron beam is placed. This is in
agreement with the formulated expectations.

8.1 Introduction

The optical properties of gold are such that polarization effects play an
important role in the interaction of light with plasmonic nano-structures
made of this noble metal. Knowledge of the polarization of light scattered
by rectangular subwavelength holes is therefore of great value to further
the understanding of the interaction of light with these structures. Far-field
methods have been used to obtain the polarization dependent transmission
through rectangular holes [2] and the coupling efficiency of the impinging
light to surface plasmon polaritons [41]. Also polarization resolved near-
field scanning optical microscopy on single holes has been performed [84].
Both far-field and near-field methods are however unable to resolve how
hole shape influences this behaviour. With transition radiation microscopy,
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polarization dependent information with a much higher resolution can be
obtained, as was shown by Degiron and co-workers [2] for circular holes.
In this chapter we will discuss polarization resolved measurements on a
rectangular hole.

8.2 Induced dipole moments in a rectangular hole

A helpful concept that is often used in the description of polarization effects
in metal holes is the induced surface charge distribution in the quasi-static
limit. The quasi-static limit is valid when the structure is much smaller
than the wavelength of the light, which is a reasonable assumption for the
rectangular hole with dimensions 100 × 260 nm that we study. The sur-
face charge distribution induced by the illumination of a hole with linearly
polarized light is depicted schematically in Figure 8.1 [85, 86]. The corre-
sponding induced dipole moment is oriented parallel to the inducing field.
If we excite the structure at an edge it is impossible to induce a dipole
moment along the edge due to the good conductivity of the metal. Across
the hole a dipole moment can be induced however and this means that
the preferential polarization of the field radiated by the induced dipole is
perpendicular to the edge.

An alternative way to argument what the polarization scattered from
the hole will be -giving the same result- is the efficiency to launch surface
plasmon polaritons at a metal edge. To efficiently launch surface plasmon
polaritons at an extended metal edge, the polarization of the light has to be
chosen perpendicular to the edge. The reason for this is that the symmetry
of the applied field has to match the symmetry of the electric field of the
plasmon. For light polarized parallel to the edge this is not the case. In
the experiments described in this thesis, the inverse process is studied: by
means of the electron beam, surface waves are generated that scatter from
the hole to the far-field. Based on reciprocity this will lead to scattered
light with a specific polarization.

8.3 Polarization selection

The setup (see Chapter 5, Figure 5.2) has the possibility to introduce a
polarizer in the beam path. This way the contributions of the different
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Figure 8.1: Surface charge distribution induced by light impinging on a hole
with its polarization oriented along the arrow.

polarizations can be analyzed. The polarization dependent collection prop-
erties of the parabolic mirror are however not trivial. In a simple example
we will illustrate that one has to be careful while interpreting polarization
resolved measurements. We consider a dipole source α in the focal point
of a parabolic mirror, with its dipole moment oriented along the axis of
the paraboloid (see Figure 8.2). Following the rays from the dipole per-
pendicular to its dipole moment, the reflected rays form a collimated beam
emerging from the mirror. This beam will be radially polarized. Measuring
the intensity of the beam depending on the angle of the analyzer will give
no clear information on the orientation of the dipole. From this we could
conclude that the polarization of the light emitted by the dipole is lost.
However, when the light is scattered from the structure in a preferential
direction it is very well possible that information on the polarization is still
present. Additionally when unpolarized light impinges on the aluminium
parabolic mirror the reflected light will not become polarized. This sug-
gests that if polarization dependencies are observed they have to be related
with a polarization dependent emission.

Based on the previous discussion it is difficult to argue what the rela-
tion between the polarization of the emitted light and the polarization of
the collected light is. We will assume here that the light scattered at the
subwavelength hole is predominantly directed straight up from the surface.
Then the polarization emitted and collected are related to each other as
indicated by the X and Y polarization drawn in the schematic illustration
of Figure 8.2.
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α

X-polarization

Y-polarization

Y

X

a b

c

Figure 8.2: Two cross sections of the parabolic mirror (figure a and b).
The dashed arrows indicate a light path, the thin arrows indicate polariza-
tion directions. A dipole α oriented parallel to the surface, with its dipole
moment pointing along the axis of the paraboloid, will emit light that is
radially polarized after the mirror. In the interpretation of the measure-
ments presented in this chapter, it is assumed that most of the collected
light is scattered by the hole straight up from the surface. This means that
the X and Y-polarization emitted from the sample indicated schematically
by the rectangular hole (figure c) are mapped on the X and Y-polarization
as indicated in the cross section on the right side (figure b).
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8.4 Results

Figure 8.3 shows the result of 16 intensity maps measured of the same hole,
rotating the analyzer after the parabolic mirror in steps of 22.5 degrees over
360 degrees. Clearly the light collected by the system has polarization de-
pendent properties as the maps differ distinctively for different orientations
of the polarizer. The collected light consists of a not-linearly polarized part
and a linearly polarized part. Generally the not-linearly polarized part con-
sists of an unpolarized part, a circular polarized part and a part that arises
from the spatial variation of the linear polarization within the beam. The
current measurements can not be used to distinguish these contributions.

Per pixel position the function Sθ = Iu + Ip ∗ cos2(θ − θp) is fitted to
the measurements, where Sθ is the intensity measured on each pixel for
different orientation angles θ of the analyzer. Iu,Ip and θp are fit parame-
ters that correspond to the intensity of the not-linearly polarized part, the
intensity of the linearly polarized part and the orientation of the linearly
polarized part respectively. Figure 8.4 shows the obtained values of Iu and
Ip in identical color scales. Note that the polarized intensity Ip is larger
than the unpolarized. In Figure 8.5 the intensity Ip and the angle θp are
plotted as headless arrows. The polarization of the emission is oriented
perpendicularly to the edges of the hole on the right, left and lower part of
the hole. In the upper part of the hole the polarization is oriented parallel
to the edge of the hole, but here the linearly polarized contribution is lower
in amplitude. The asymmetry that is observed on the top and bottom
side is most probably related to the asymmetric collection efficiency of the
parabolic mirror.

8.5 Conclusion and discussion

Although one must be careful in interpreting the results of polarization-
dependent measurements obtained with a parabolic mirror, the choice made
in relating the angle of the polarizer to the polarization of the emitted light
seems to be correct, as the results presented in Figure 8.4 are in good
agreement with the expectations formulated in Section 8.2. The scattered
field is polarized perpendicular to the edge from which it is scattered. This
is also in correspondence with an induced surface charge distribution as
schematically depicted in Figure 8.1.
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Figure 8.3: 16 intensity maps of the same rectangular hole for 16 settings
of the analyzer, rotating the polarizer over 2π radiants.
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Figure 8.4: Polarization distribution reconstructed from 16 measurements
of a single hole. a) The intensity map of Ip, the amplitude of the linearly
polarized contribution. b) The intensity map of Iu, the amplitude of the
unpolarized contribution.
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Figure 8.5: Polarization distribution reconstructed from 16 measurements
of a single hole. At every position a headless arrow indicates the magnitude
and orientation of the linearly polarized part (Ip).
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Chapter 9

Scattering from multiple
holes

Transition radiation microscopy measurements on structures consist-
ing of three subwavelength holes are discussed. A large influence of
hole spacing is found. The collected spectra are shifted by 75 nm by
changing the spacing between the holes from 240 to 350 nm. This
shows that no long range periodicity is necessary to achieve consider-
able shifts in the spectral response of these structures.

9.1 Introduction

When an array of subwavelength holes is illuminated by a plane wave each
hole acts as a scatterer at which surface waves are generated. These surface
waves can subsequently scatter or reflect at the other holes present in the
structure. This scattering process leads to the reflection and transmission
of light from the complete structure. In this chapter we try to decompose
this complicated problem by looking at only 3 holes. Similar structures
have been measured using far-field methods where the entire array is illu-
minated [87]. In such experiments all the holes are driven in unison. With
transition radiation microscopy we can locally excite this relatively simple
geometry. In the experiment we will vary the distance between these holes
and investigate the spectra measured at several different positions.
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9.2 Results

In Figure 9.1 transition radiation microscopy intensity images of three con-
figurations of three subwavelength holes are shown. In each image the holes
have a width of 260 and a height of 100 nm. The distance D between the
holes is different for each triplet.
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Figure 9.1: Intensity maps of 3 configurations of rectangular holes and a
schematic overview. The figures a,b and c all have holes of the size 100
× 260 nm. The distance between the holes is 240 (a), 300 (b) and 350
nm (c). In the schematic overview (d) the positions 1, 2 and 3 indicate
the positions where spectra are shown in figure 9.2. All three pictures have
identical scaling, the axes are in µm.

Figure 9.2a shows the spectra acquired when the electron beam is po-
sitioned at the top side of the upper hole of the triplet (position 1 in
the schematic overview in Figure 9.1d). The graphs a, c and e are for
the three triplets with different spacing. This same data is shown in
graphs b, d and f but here the spectra are normalized: the plotted value
is N(λ) = Idet(λ)/Iref (λ) with Idet(λ) the detected spectrum and Iref (λ) a
reference spectrum obtained at the long side of a single isolated hole of the
same shape. The graphs in both figures show the spectra and normalized
spectra at respectively position 1 (a,b), 2 (c,d) and 3 (e,f) (Figure 9.1d).
The positions 1, 2 and 3 are all located in the high intensity peaks just
above or below the hole.

The first observation to be made is that all normalized spectra have
values mainly above 1. The intensity of the spectra increases going from
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Figure 9.2: Spectra at 3 positions for each position varying the hole spacing
(a,c,e) and normalized spectra at 3 positions for each position varying the
hole spacing (b,d,f). (a) The spectra at position 1 at the top side of the
upper hole. (c) The spectra at the position 2 at the bottom side of the top
hole. (e) The spectra at the top side of the top side of the middle hole.
(b) The spectra at position 1 at the top side of the upper hole. (d) The
spectra at the position 2 at the bottom side of the top hole. (f) The spectra
at the top side of the top side of the middle hole. The plotted value is
N(λ) = Idet(λ)/Iref (λ) with Idet(λ) the detected spectrum and Iref (λ) the
spectrum collected at the top maximum of a isolated hole of the same size
and shape. All spectra were obtained in the maxima visible in Figure 9.1,
just above or below the hole.
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position 1 to position 2 to position 3 (figures a,b,c). The amount of light
radiated from the structure within the measured range of wavelengths, is
thus larger than for a single isolated hole. This statement needs some
refinement, as it is not true for all wavelengths. The geometry with the
smallest spacing gives rise to a small decrease in the spectrum with respect
to the single hole, for a small band of wavelengths. Especially at position 2
(Figure 9.2b) a decrease in the wavelengths around 700 nm can be observed.
Another trend visible in the data, is that the peak in both the spectrum
and the normalized spectrum shifts to the red when the spacing of the holes
is increased. The positions of the peaks in the spectra as a function of the
hole spacing are plotted in Figure 9.3.

The observed intensity at every position is generally higher than the
intensity measured at a single isolated hole. This behavior of the intensity
is in good correspondence with what one intuitively might expect: more
holes leads to more scattering of surface waves and thus to a higher ob-
served intensity. At position 2 and 3 from a geometric point of view, more
scattering is expected than from position 1, as the latter position neighbors
a large empty field of gold. Thus, the closer to the center of the triplet the
more scattering will occur.

The fact that the radiated spectrum changes as the spacing between the
holes is varied, is an indication that there is an interference effect leading
to the response of the entire structure. Surprisingly, no long range peri-
odicity is necessary to achieve a considerable (75 nm) shift in the peak
position. This is in good agreement with the observation of clear peaks in
the transmission spectrum of quasi-periodic structures [88]. Here as well,
short range order plays an important role as these structures lack long range
periodicity.

We note here that the system under investigation has similarities with
an antenna array, as was pointed out by Alaverdyan et al. [87]. The holes
act as scatters with a well defined phase difference, given by their distance.
In our experiment we can preferentially excite one of the elements of the
antenna array. Yet the observed spectrum is the response of the entire
structure rather than the response of a single hole.
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Figure 9.3: Positions of the peaks as a function of hole spacing D for po-
sition 1 (J, top side of the top hole), position 2 (¥, lower side of the top
hole) and position 3 (H, upper side of the middle hole)

9.3 Conclusions

Scattering plays an important role in structures consisting of just three
holes. The different configurations gives rise to large (75 nm) shifts of the
peaks in the observed spectra. The role of spacing is very important in these
structures, the experiments suggest however that long range periodicity is
not necessary to change the spectral behavior of structures consisting of
subwavelength holes.
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Figure 9.4: Several SEM pictures of holes, taken under 52 degrees.
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Group delay through
attenuating media

The time delay a pulse experiences when it propagates through a subwave-
length hole array yields insight into the dynamic response of the structure.
One specific interest in the research of time dynamics in photonic nanos-
tructures is the increase of nonlinear effects when a light pulse has a low
velocity [89]. Effects such as second harmonic generation are expected to
be enhanced when a pulse resides longer in a structure. One has to be
careful however in interpreting the delay of pulses propagating though at-
tenuating media. In such media the common definition of group velocity
vg = dω

dk [90] is not equivalent to the velocity of the envelope of the pulse.
This stems from the fact that a combination of group velocity dispersion
and attenuation can also lead to a delay of the envelope of a pulse as well.
This delay is however related with the reshaping of the pulse and not with
a longer presence of the field in the medium. It will therefore cause no
enhancement of light matter interactions as slow light does.

In the measurements performed in this thesis the delay of the envelope
of the pulse through a subwavelength hole array is determined. The trans-
mission amplitude of these structures has a large wavelength dependence.
In this appendix the role of this wavelength-dependent transmission on the
propagation of the envelope is investigated. The aim is to formulate the
theoretical background for the description and measurement of femtosec-
ond (fs) pulse propagation through media in which the transmission varies
as a function of frequency. We will see that an interferometric measurement
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technique has properties that make it a very practical technique to mea-
sure group delay. Additionally, we will derive the lowest order term that
describes the deviation of the velocity of the envelope from dω

dk . This term
will alow us to determine the effect of attenuation on the measurement of
group delay.

A.1 Group velocity in absorbing media

The field of a pulse, propagating along the x-direction through an isotropic
absorbing medium, can be written as an integral over many harmonic wave-
forms using a Fourier expansion,

E(x, t) =
∫ ∞

−∞
A(ω)ei(k(ω)x−ωt)dω, (A.1)

where A(ω) is the complex spectrum of the field. The propagation of the
wave in a medium is described by the factor exp ik(ω)x. Note that k(ω)
is dependent on the frequency ω. In general k is a complex quantity in
which the real part k′ describes the phase evolution while the imaginary
part k′′ describes the attenuation in the material. Throughout this chapter
this notation using ′ for the real part and ′′ for the imaginary part of a
complex quantity will be used. We will consider here the situation in which
A(ω) is sufficiently narrow in bandwidth such that we can approximate the
wavevector k with a Taylor series around ω = ω0.

k(ω) = β′0 + β′1(ω − ω0) + iβ′′0 + iβ′′1 (ω − ω0) + ... (A.2)

To simplify the notation, different orders of derivation are written as βn =
dnk
dωn |ω0. In this section we will firstly limit ourselves to the first two terms.
The expression for k(ω) can be substituted in Equation A.1. This yields

E(x, t) =
∫ ∞

−∞
Ã(ω)e−β′′0 x−β′′1 (ω−ω0)xeβ′0x−ω0tei(β′1x−t)(ω−ω0)dω. (A.3)

Now it is possible to separate the carrier wave from the envelope,

E(x, t) = ei(β′0x−ω0t)e−β′′0 x

∫ ∞

−∞
Ã(ω)e−β′′1 (ω−ω0)xei(β′1x−t)(ω−ω0)dω. (A.4)

The first term outside the integral describes a wave with the phase velocity
of the carrier wavelength. The second term outside the integration, con-
taining the term β′′0 , describes the attenuation in the medium. This term
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has no influence on the pulse delay but only on the transmitted amplitude.
The complex exponent inside the integral describes the propagation of the
envelope where the group velocity is vg = 1

β′1
= dω

dk′ . Though we are not tak-
ing into account group velocity dispersion, the frequency-dependent losses
given by β′′1 , might cause deformation of the initial envelope depending on
the exact form of A(ω).

A.1.1 The Fourier-limited pulse

The effect of the attenuation on the propagation of Fourier-limited and
chirped pulses with a Gaussian spectrum can be described analytically.
We first consider a Fourier-limited pulse. The expression for the spectral
amplitude is then

A(ω) = e−
(ω−ω0)2

∆ω2 , (A.5)

where ∆ω describes the spectral width of the pulse. The integration in
Equation A.1 can be performed changing the integration variable ω′ =
ω − ω0,

E(x, t) = ei(β′0x−ω0t)e−β′′0 x

∫ ∞

−∞
e−

ω′2
∆ω2 e−β′′1 ω′xei(β′1x−t)ω′dω′. (A.6)

The expression for the field then yields

E(x, t) = ei(β′0x−ω0t)e−β′′0 x∆ωπe−
1
4
∆ω2(t−β′1x)2e

1
4
∆ω2(β′′1 x)2e

1
2
i∆ω2(t−β′1x)β′′1 x.

(A.7)
In which an envelope moving with velocity 1/β′1 can be recognized in the
exponent exp

(− 1
4∆ω2(t− β′1x)2

)
. The term exp

(
1
4∆ω2(β′′1x)2

)
causes a

spatial broadening of the pulse. Such a broadening does not influence
the velocity of the envelope since it does not displace the center of the
pulse. The last exponent is a pure phase factor that will not influence the
propagation velocity of the envelope. We conclude from this that the group
delay of the Fourier-limited pulse is not influenced by attenuation.

A.1.2 The chirped pulse

In case of a chirped pulse with a Gaussian spectrum the delay is no longer
independent of the attenuation. We consider a chirped pulse,

Ã(ω) = e
(ω−ω0)2

∆ω2(1+iγ) , (A.8)
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where γ is a quadratic phase factor that describes the frequency chirp of
the pulse. We then obtain an expression for the field

E(x, t) = ei(β′0x−ω0t)e−β′′0 xπ∆ωe−
1
4
∆ω2(1+iγ)(t−(iβ′′1 +β′1)x)2 (A.9)

from which we can derive the expression for the envelope

|E(x, t)| = π∆ωe−β′′0 xe−
1
4
∆ω2((t−β′1x)2+(β′′1 x)2)e−

1
4
∆ω2γβ′′1 x(t−β′1x). (A.10)

Now the last term describes a deformation of the Gaussian pulse shape due
to the chirp factor γ. It contains terms of both t and β′′1 . This means that
the attenuation term leads to a deformation of the envelope that shifts the
center of the envelope. From this we conclude that the delay of the pulse
is dependent on its initial chirp.

A.2 Measurement method for the group delay

As we have seen, a combination of an absorbing medium and the initial
chirp of the input pulse can lead to a change in pulse delay. This suggests
that an involved characterization of the pulses used to measure the group
delay through a structure is necessary. To avoid such complicated proce-
dure, we chose to use a linear interferometric method. As we will show this
method eliminates the effect of the initial chirp of the pulse. Still there is
an effect of attenuation on the observed delay in this technique as well. We
will derive an equation that will allow us to determine the magnitude of
this effect.

A.2.1 Transfer function

In the previous section we considered pulse propagation through isotropic
media. Here, instead of using a detailed picture of how the light propagates
through the medium, we will describe the sample and other components by
their complex transfer function T (ω). This formalism considers a compo-
nent as a ’black box’ with a specific frequency response. In this way we will
be able to describe the effect of attenuation on the observed group delay
as general as possible.

The propagation through a structure leads to a group delay that can
be deduced from the complex transfer function. Using

Ts(ω) = ei(k′(ω)+ik′′(ω))L, (A.11)
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where k(ω) is the wavevector in an effective medium with thickness L. The
group velocity dω

dk can be calculated from Ts(ω)

k′(ω) = arg[Ts(ω)]/L, (A.12)

dω

dk
= L

dω

d arg[Ts(ω)]
. (A.13)

The group delay follows from this

τg = L/vg =
d arg[Ts(ω)]

dω
. (A.14)

This last relations gives the group delay, which is not equivalent to the delay
of the envelope of the pulse in media with attenuation, as was made clear
in the previous section. In the most general case the effect of a medium
on the propagation of a pulse is described by a transfer function written in
the form

T (ω) = eiα(ω), (A.15)

with α(ω) a complex function of the frequency. Taking the first 3 terms of
the Taylor expansion of α(ω) around ω0 this can be written as

Ttot(ω) ≈ eiα0+iα1(ω−ω0)+i 1
2
α2(ω−ω0)2 (A.16)

with α0 = α(ω0),α1 = dα
dω |ω0 and α2 = d2α

dω2 |ω0 all complex quantities. This
notation will be used in the following section.

A.2.2 Interferometric detection

A schematic representation of the linear interferometric setup is depicted
in Figure A.1. The sample is placed in one of the branches of a Mach-
Zehnder interferometer, the input light source is a laser producing fem-
tosecond pulses. By scanning the path length of one of the branches, an in-
terferogram of the pulses is measured. The maximum of this interferogram
will be measured when the pulses in the two branches have an exactly equal
optical path length. The delay line position for which this occurs depends
on the velocities with which the pulses traveled through both branches or
equivalently on the difference in optical path length. The maximum of the
interferogram will be found therefore at a different delay-line position if the
propagation through the sample is fast with respect to when it is slow. This
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way, from the position of the interferogram information on the propagation
velocity through the sample is obtained. By comparing the position of the
interferograms to an interferogram measured on a reference structure, the
group delay can be determined.

Detector

Delay line

Sample

Input Signal branch

Reference branch

Figure A.1: Schematic showing the interferometric detection setup for the
measurement of group delay.

The technique used to measure the group delay makes use of a lock-in
detection technique that allows us to determine the full complex interfer-
ogram. More detailed technical information of this technique is given in
Chapter 3. The detected voltage is given by (see [91] p. 19-22 or [62])

V (τ) = 2CdetF
−1{E∗

ref (ω)Esig(ω)}, (A.17)

where Cdet is a constant describing the detection efficiency. This expression
is valid under the assumption that the integration time of the detection is
much longer than the pulse duration. The input signal before the beam
splitter in the interferometer is assumed to be a pulse with a Gaussian
spectrum and possibly a non-negligible chirp.

A(ω) = Ãeσ(ω−ω0)2+iγ(ω) (A.18)

where γ(ω) is any real function of ω describing the phase of the pulse and
σ = 1

∆ω2 describes the width of the pulse . The transfer function for the
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sample can be written as,

Ts(ω) = eis(ω), (A.19)

with s(ω) a complex function. The real part of s(ω) describes the phase
evolution while the imaginary part describes the wavelength dependent
transmission. In a similar way the propagation over the delay line can be
described by

Td(ω) = eiωτ . (A.20)

The fields interfering at the detector are

Eref (ω) = A(ω)Td(ω), (A.21)

that describes the light that propagated through the reference branch and

Esig(ω) = A(ω)Ts(ω) (A.22)

which describes the light that propagated through the sample. The expres-
sion for the detected voltage then becomes (dropping the ω dependence for
sake of simplicity in notation)

V (τ) = 2 ∗ CdetF
−1{A∗T ∗d ATs}

= 2 ∗ CdetF
−1{|A|2T ∗d Ts}. (A.23)

A very elegant consequence of using the linear interferogram technique
becomes clear now: the complex amplitude of the incoming pulse A appears
in the expression for the detected voltage as its absolute value squared |A|2.
Any chirp or other phase factors that the pulse might have had before it
was split in signal and reference branch will therefore no longer play a role
in the observation of the group delay.

We will now make some explicit assumptions and evaluate the effect of
attenuation in the sample on the observed delay. Writing the combined
effect of the transfer functions T ∗d and Ts in one transfer function Ttot, and
taking the first 3 terms of the Taylor expansion around ω0:

Ttot = T ∗d Ts

= ei(α′+iα′′)

≈ eiα0+iα1(ω−ω0)+i 1
2
α2(ω−ω0)2

= ei(s′0+is′′0−ω0τ)+i(s′1+is′′1−τ)(ω−ω0)+i 1
2
(s′2+is′′2 )(ω−ω0)2 . (A.24)
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Performing the Fourier transform of Equation A.23 leads to

V (τ) ∝ eiα0eiω0τ

√
1
2σ − 1

2 iα2

e
1
4

(
i(τ+α1)

2σ+i 12 α2

)2

(A.25)

This expression can be rewritten using the expressions for αn which leads
to a quite involved expression. We are interested only in the factors that
determine the position of the envelope. These are determined by the term
τd if we rewrite the expression in the form

V (τd) ∝ e−ξ(τ−τd)2 (A.26)

where both ξ and τd are real. Then

τd = s′1 − s′′1
Im((4σ − s′′2 + is′2)

2)
Re((4σ − s′′2 + is′2 + ib2)2)

= s′1 − s′′1
(4σ − s′′2)(s

′
2)

(4σ − s′′2)2 − (s′2)2
. (A.27)

The factor s′1 is the group delay introduced by the sample, this is the
factor we are interested in for the measurement. The second term describes
how the wavelength-dependent transmission of the sample (s′′1) leads to an
observed delay of the pulse. We can use this expression further on in
this thesis to check whether the observed delay has any contribution that
originates from attenuation.

A.3 Conclusion

Equation A.27 allows us to determine the influence of attenuation on the
delay of the envelope of the pulse, based on the first 3 terms in the Taylor
series of a complex transfer function. Additionally it gives us insight in the
way attenuation and group velocity dispersion lead to a change in delay of
the envelope of a pulse.
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Samenvatting

Het onderzoeksgebied van de nano-optica is een bruisend vakgebied, dat
volop in ontwikkeling is. Een van de doelen van het vakgebied is om controle
over het gedrag van licht te krijgen, op een schaal kleiner dan de golflengte.
Nano-plasmonische structuren zijn op dit moment de meest veel belovende
materialen om dit te bereiken.

In 1998 ontdekten Ebbesen en zijn collega’s dat de transmissie van licht
door roosters van gaten met een afmeting kleiner dan de golflengte van
licht zeer efficint kan zijn. Deze kan zelfs zo efficint zijn, dat de transmissie
genormaliseerd door de open fractie van de structuur groter is dan 1. Deze
ontdekking was een grote verassing, want tot op dat moment werd de trans-
missie van licht door sub golflengte-gaten als zeer inefficint beschouwd. Na
deze ontdekking zijn subgolflengte-gaten een van de meest populaire nano-
plasmonische structuren geworden. In dit proefschrift worden de dynamis-
che en de locale eigenschappen van de interactie van licht met subgolflengte-
gaten bestudeerd.

De dynamische eigenschappen van de interactie van licht met subgolf-
lengte-gaten is bestudeerd door de relatie tussen de vorm van gaten en de
groepsvertraging van lichttransmissie door roosters van subgolflengte-gaten
te meten. Hiervoor is een interferometrische opstelling gebouwd waarmee
de vertraging van femtoseconde pulsen door de roosters kan worden geme-
ten. De metingen laten zien dat de tijdsvertraging maximaal is als de
golflengte van het licht zo gekozen wordt, dat deze overeenkomt met de
golflengte waarop de transmissie afkapt - de zogenaamde afkapfrequentie.
Ook is onderzocht hoe de gemeten tijdvertraging zich verhoud tot de ho-
eveelheid tweede harmonische die gegenereerd wordt als een korte intense
lichtpuls door het rooster van gaten beweegt. Het blijkt dat een hogere
pulsvertraging gepaard gaat met een hogere tweede harmonische generatie.
Dit betekent dat de afkapfrequentie gebruikt kan worden om niet-lineare
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processen te versterken.
De locale eigenschappen van de interactie van licht met subgolflengte-

gaten worden in dit proefschrift onderzocht met een speciale techniek die
gebruik maakt van de transitiestraling. Deze straling ontstaat wanneer een
elektron door het oppervlak tussen twee materialen met een verschillende
brekingsindex beweegt. Met een elektronenmicroscoop is het mogelijk een
gefocusseerde bundel elektronen op iedere gewenste positie op een object
te richten. De transitiestraling die gegenereerd wordt, is afhankelijk van de
positie van de elektronenbundel op de nano-plasmonische structuur.

Door de transitiestraling te verzamelen met een parabolische spiegel
en dit licht te meten met een spectrometer kunnen we een ’afbeelding’
van de nano-plasmonische structuur maken door op een raster van pun-
ten te meten. De resolutie wordt door de breedte van de gefocusseerde
elektronenbundel bepaald. Deze techniek geeft dus inzicht in de optische
eigenschappen van structuren met een resolutie die veel kleiner is dan de
golflengte van het licht.

Met transitiestraling-microscopie zijn metingen verricht aan een enkel
rond gat. De resultaten laten zien dat de transitiestraling toeneemt als
de elektronenbundel dichter bij de rand van het gat komt. Bovenop deze
toename is een oscillerende intensiteit als functie van afstand te zien, die
afhankelijk is van de golflengte van het licht. We modeleren dit systeem
door het gat te modeleren als een elektrische dipool die aangedreven wordt
door het elektromagnetische veld op het oppervlak. Het verzamelde licht
bestaat uit het licht dat direct gegenereerd wordt op de positie van de elek-
tronenbundel en licht dat aan het gat verstrooid wordt. Op basis van het
model kunnen we een schatting maken van de effectieve polariseerbaarheid
van het gat.

Door naar rechthoekige gaten te kijken met de transitiestraling-micro-
scopietechniek, ontdekten we dat er langs de rechte zijden van het gat
maxima waarneembaar zijn. Deze maxima hebben we nader onderzocht
door systematisch de gatvorm van rechthoekige gaten te variren en naar
het gemeten spectrum te kijken. In dit spectrum is slechts n piek te zien,
die verschuift als de gatvorm veranderd wordt. Hierbij spelen de afmetingen
van beide zijden van het gat een rol. Op grond van de gemeten resultaten
vermoeden wij dat er een relatie bestaat tussen het gemeten licht en de
afkapfrequentie van het gat.

De polarisatie van het verzamelde licht kan worden geanalyseerd door
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in de opstelling een polarisatiefilter te plaatsen. In een meting aan een
rechthoekig gat voor een aantal verschillende hoeken van de analysator
observeren wij een duidelijke polarisatie-afhankelijkheid die van plaats tot
plaats verschilt. Door aan te nemen dat het licht dat dicht bij het gat
gemaakt wordt vooral recht omhoog van het oppervlak verstrooit, kunnen
we de gemeten polarisatie aan de verstrooide polarisatie verbinden. Wij
observeren dan dat de polarisatie voornamelijk loodrecht op de assen van
het gat staat. Dit komt goed overeen met wat verwacht kan worden voor
de verstrooiing van oppervlakteplasmonen.

In een structuur met meerdere gaten speelt ook de verstrooiing aan
en tussen meerdere gaten een rol. We hebben een experiment uitgevoerd
waarbij de afstand tussen een drietal rechthoekige gaten wordt gevarieerd
en bekeken wordt hoe het spectrum in de maxima direct langs de zijden
van het gat varieert als functie van de afstand. We vinden een opmerkelijk
grote invloed van deze afstand ondanks dat de patronen die we observeren
op het oog eigenlijk nauwelijks verschillen.
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